AUTHORS INDEX QIC Vol. 3 (2003)

A-E	F-K	K-R
S. Aaronson, Quantum lower bound for recursive Fourier sampling, (2) 165	M.J. Fitch, see J.D. Franson J.D. Franson, Experimental Progress in	C. King, Maximal p-norms of entanglement breaking channels, (2)
A. Acin (I), On the structure of a	Linear Optics Quantum Computing, (s) 553	A. Klappenecker, see G. Song
tripartite states, (1) 55	C. Fuchs (I), book review o	P. Kok, Web-corner update (6), (3) 280
A. Acin (II), Security bounds in quantum cryptography using d-level systems, (6)	"Statistical Structure of Quantum Theory" by A.S. Holevo, (2) 191	P. Kwiat, see N. Peters A. Lamas-Linares, Generalized Bell
563	C.A. Fuchs (II), Squeezing quantum	inequalities with parametric down-
A. Ahmadi, On mixing in continuoustime quantum walks on some circulant graphs, (6) 611	information through a classical channel: measuring the "quantumness" of a set of quantum states, (5) 377	conversion, (s) 417 T. Laustsen, Local vs. joint measurements for the entanglement of
S.J. Akhtarshenas, L-S decomposition for 2×2 density matrix by using Wootters's	S. Giannini, Information theoretic aspects in ponderomotive systems, (3)	assistance, (1) 64 D.W. Leung, see A.M. Childs
basis, (3) 229	265	B. Lev, Fabrication of micro-magnetic
J. Altepeter, see N. Peters	G. Giedke, Entanglement	traps for cold neutral atoms, (5) 450
K. Banaszek, see A.B. U'Ren	transformations of pure Gaussian states	C.-Z. Li, see P.-X. Chen
S. Beauregard, Circuit for Shor's	(3) 211	N. Linden, see R. Jozsa
algorithm using $2 n+3$ qubits, (2) 175	N. Gisin (I), see H. Bechmann-	S. Mancini (I), Entanglement and
H. Bechmann-Pasquinucci, Bell inequality for quNits with binary	Pasquinucci N. Gisin (II), see A. Acin (II)	nonlocality for a mixture of a paircoherent state, (2) 106
measurements, (2) 157	H-S. Goan, An analysis of reading out	S. Mancini (II), see S. Giannini
R. Belk, see A. Ahmadi	the state of a charge quantum, (2) 121	L1. Masanes, Tight Bell inequality for d -
Th. Beth, see P. Wocjan	D. Gottesman, Uncloneable encryption,	outcome measurements correlations, (4)
D. Bouwmeester, see A. Lamas-	(6) 581	345
Linares	Ph. Grangier, see F. Grosshans	N.D. Mermin, Books review on " A
D. Branning, see N. Peters	F. Grosshans, Virtual entanglement and	shortcut through time" by G. Johnson,
G.K. Brennen, An observable measure of entanglement for pure states of	reconciliation protocols for quantum cryptography with continuous variable	and "The quest for the quantum computer" by J. Brown, (5) 465
multi-qubit systems, (6) 619	(s) 535	P. Milman, see H. Ollivier
N.J. Cerf, see F. Grosshans	G.-C. Guo, see .G-P. Guo	J. Muller-Quade, On the problem of
H. Chen, Necessary conditions for efficient simulation of Hamiltonians	G.-P. Guo, Entanglement of individual photon and atomic ensembles, (6) 627	authentication in a quantum protocol to detect traffic analysis, (1) 48
using local unitary operations, (3) 249	J.C. Howell, see A. Lamas-Linares	S.R. Nichols, Between entropy and
K. Chen, A matrix realignment method	W.T.M. Irvine, see A. Lamas-Linares	subentropy, (1) 1
for recognizing entanglement, (3) 193	B.C. Jacobs, see J.D. Franson	H. Ollivier, Proposal for realization of a
P.-X. Chen, Local distinguishability of quantum states and the distillation of	M.A. Jafarizadeh, see S.J. Akhtarshenas	Toffoli gate via cavity-assisted atomic collision, (6) 603
entanglement, (3) 203	E. Jané, Simulation of quantum dynamics	J. Pachos, Generation and degree of
A.M. Childs, Asymptotic entanglement capacity of the Ising \&	with quantum optical systems, (1) 15 D. Janzing, see P. Wocjan	entanglement in a relativistic formulation, (2) 115
anisotropic Heisenberg interactions, (2) 97	E. Jeffrey, see N. Peters	N. Peters, Precise creation, characterization, and manipulation of
C.-L. Chou, Non-empty quantum dot as a spin-entangler, (4) 307	R. Jozsa, Entanglement cost of generalised measurements, (5) 405	single optical qubits, (s) 503 T.B. Pittman, see J.D. Franson
J.I. Cirac (I), see E. Jané	B. Julsgaard, Atomic spins as a storage medium for quantum fluctuations of light,	M.B. Plenio, see G. Giedke
J.I. Cirac (II), see A. Acin	medium for quantum fluctuations of light, (s) 518	E. S. Polzik, see B. Julsgaard
J.I. Cirac (III), see G. Giedke		S. Popescu, see R. Jozsa
M.M. Donegan, see J.D. Franson	A Kaltchenko, Universal compression of ergodic quantum sources, (4) 359	S. Presnell, see R. Jozsa
W. Dür, see E. Jané J. Eisert, see G. Giedke	J. Kempe, 3-Local Hamiltonian is QMA-	J. Proos, Shor's discrete logarithm quantum algorithm for elliptic curves, (4)
S.J. van Enk (I), see T. Laustsen	complete, (3) 258	$\begin{aligned} & \text { quan } \\ & 317 \end{aligned}$
S.J. van Enk (II), Quantum communication protocols using the	M. Keyl, Infinitely entangled states, (4) 281	O. Regev, see J. Kempe T. Rudolph, see S.J. van Enk (II)

S-Z
M. Sasaki, see C.A. Fuchs (II)
V. Scarani, see A. Acin (II)
D. Schlingemann (I), see M. Keyl
D. Schlingemann (II), Logical network
implementation for graph codes and
cluster states, (5) 431
C. Schori, see B. Julsgaard
D. Shepherd, see R. Jozsa
Y.-Y. Shi, Both Toffoli and Controlled-
NOT need little help to universal
quantum computing, (1) 84
E. Solano, see J. Pachos
G. Song, Optimal realizations of
controlled unitary gates, (2) 139
J. L. Sorensen, see B. Julsgaard
R. Steinwandt, see J. Muller-Quade
C. Tamon, see A. Ahmadi
H. Terashima, Einstein-Podolsky-Rosen
correlation seen from moving observers,
(3) 224
P. Tombesi (I), see S. Mancini
P. Tombesi (II) see S. Giannini
R. Tualle-Brouri, see F. Grosshans
M. Ueda, see H. Terashima
A.B. U'Ren, Photon engineering for
quantum information processing, (s) 480
F. Verstraete (I), see T. Laustsen
F. Verstrarte (II), see A.M. Childs
G. Vidal (I), see E. Jané
G. Vidal (II), see A. Acin
G. Vidal (III), see A.M. Childs
I.A. Walmsley, see A.B. U'Ren
W. Wang, see W. Wu
C. Wendler, see A. Ahmadi
J. Wenger, see F. Grosshans
R.F. Werner, see M. Keyl
A. Winter, see R. Jozsa
P. Wocjan, Two QCMA-complete
problems, (6) 635
R. de Wolf, book review On "An
Introduction to Quantum Computing
Algorithms (A.O. Pittenger)"", "Quantum
Computing (M Hirvensalo)", and
"Classical and Quantum Computation (A.
Yu. Kitaev, A. Shen, and M.N. Vyalyi)",
(1) 92
W.K. Wootters, see S.R. Nichols
L.-A. Wu, see K. Chen
W. Wu, Dynamics of distillability, (1)
38
E.-H. Yang, see A. Kaltchenko
X. X. Yi, see W. Wu
Ch. Zalka, see J. Proos
P. Zoller, see E. Jané

* in the order: first Author's name, article title, (issue no.) starting page number

