QIC Abstracts

 Vol.14 No.5&6, April 1, 2014

Review/Survey:

QMA-complete problems (pp0361-0383)
          
Adam D. Bookatz
In this paper we give an overview of the quantum computational complexity class QMA and a description of known QMA-complete problems to date (The reader is invited to share more proven QMA-complete problems with the author). Such problems are believed to be difficult to solve, even with a quantum computer, but have the property that if a purported solution to the problem is given, a quantum computer would easily be able to verify whether it is correct. An attempt has been made to make this paper as self-contained as possible so that it can be accessible to computer scientists, physicists, mathematicians, and quantum chemists. Problems of interest to all of these professions can be found here.

Research Articles:

Two-message quantum interactive proofs and the quantum separability problem (pp0384-0416)
          
Patrick Hayden, Kevin Milner, and Mark M. Wilde

Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" QSZK proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state
quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.

Periodicity and perfect state transfer in quantum walks on variants of cycles (pp0417-0438)
          
Katharine E. Barr, Tim J. Proctor, Daniel Allen, and Viv M. Kendon
We systematically investigated perfect state transfer between antipodal nodes of discrete time quantum walks on variants of the cycles $C_4$, $C_6$ and $C_8$ for three choices of coin operator. Perfect state transfer was found, in general, to be very rare, only being preserved for a very small number of ways of modifying the cycles. We observed that some of our useful modifications of $C_4$ could be generalised to an arbitrary number of nodes, and present three families of graphs which admit quantum walks with interesting dynamics either in the continuous time walk, or in the discrete time walk for appropriate selections of coin and initial conditions. These dynamics are either periodicity, perfect state transfer, or very high fidelity state transfer. These families are modifications of families known not to exhibit periodicity or perfect state transfer in general. The robustness of the dynamics is tested by varying the initial state, interpolating between structures and by adding decoherence.

Quantum algorithms for search with wildcards and combinatorial group testing (pp0439-0453)
          
Andris Ambainis and Ashley Montanaro
We consider two combinatorial problems. The first we call ``search with wildcards'': given an unknown $n$-bit string $x$, and the ability to check whether any subset of the bits of $x$ is equal to a provided query string, the goal is to output $x$. We give a nearly optimal $O(\sqrt{n} \log n)$ quantum query algorithm for search with wildcards, beating the classical lower bound of $\Omega(n)$ queries. Rather than using amplitude amplification or a quantum walk, our algorithm is ultimately based on the solution to a state discrimination problem. The second problem we consider is combinatorial group testing, which is the task of identifying a subset of at most $k$ special items out of a set of $n$ items, given the ability to make queries of the form ``does the set $S$ contain any special items?''\ for any subset $S$ of the $n$ items. We give a simple quantum algorithm which uses $O(k)$ queries to solve this problem, as compared with the classical lower bound of $\Omega(k \log(n/k))$ queries.

The witness of sudden change of geometric quantum correlation (pp0454-0466)
          
Chang-shui Yu, Bo Li, and Heng Fan
In this paper, we give a sufficient and necessary condition (witness) for the sudden change of geometric quantum discord by considering mathematical definition of the discontinuity of a function. Based on the witness, we can find out various sudden changes of quantum correlation by considering both the Markovian and the non-Markovian cases. In particular, we can accurately find out critical points of the sudden changes even though they are not quite obvious in the graphical representation. In addition, one can also find that sudden change of quantum correlation, like the frozen quantum correlation, strongly depends on the choice of the quantum correlation measure.

An improved query for the hidden subbroup problem (pp0467-0492)
          
Asif Shakeel
The Hidden Subgroup Problem (HSP) is at the forefront of problems in quantum algorithms. In this paper, we introduce a new query, the \textit{character} query, generalizing the well-known phase kickback trick that was first used successfully to efficiently solve Deutsch's problem. An equal superposition query with $\vert 0 \rangle$ in the response register is typically used in the ``standard method" of single-query algorithms for the HSP. The proposed character query improves over this query by maximizing the success probability of subgroup identification under a uniform prior, for the HSP in which the oracle functions take values in a finite abelian group. We apply our results to the case when the subgroups are drawn from a set of conjugate subgroups and obtain a success probability greater than that found by Moore and Russell.

Can quantum entanglement implement classical correlated equilibria? (pp0493-0516)
          
Alan Deckelbaum
We ask whether players of a classical game can partition a pure quantum state to implement classical correlated equilibrium distributions. The main contribution of this work is an impossibility result: we provide an example of a classical correlated equilibrium that cannot be securely implemented without useful information leaking outside the system. We study the model where players of a classical complete information game initially share an entangled pure quantum state. Players may perform arbitrary local operations on their subsystems, but no direct communication (either quantum or classical) is allowed. We explain why, for the purpose of implementing classical correlated equilibria, it is desirable to restrict the initial state to be pure and to restrict communication. In this framework, we define the concept of pure quantum correlated equilibrium (PQCE) and show that in a normal form game, any outcome distribution implementable by a PQCE can also be implemented by a classical correlated equilibrium (CE), but that the converse is false. We extend our analysis to extensive form games, and compare the power of PQCE to extensive form classical correlated equilibria (EFCE) and immediate-revelation extensive form correlated equilibria (IR-EFCE).

Hardness of approximation for quantum problems (pp0517-0540)
          
Sevag Gharibian and Julia Kempe
The polynomial hierarchy plays a central role in classical complexity theory. Here, we define a quantum generalization of the polynomial hierarchy, and initiate its study. We show that not only are there natural complete problems for the second level of this quantum hierarchy, but that these problems are in fact hard to approximate. Using the same techniques, we also obtain hardness of approximation for the class QCMA. Our approach is based on the use of dispersers, and is inspired by the classical results of Umans regarding hardness of approximation for the second level of the classical polynomial hierarchy [Umans, FOCS 1999]. The problems for which we prove hardness of approximation for include, among others, a quantum version of the Succinct Set Cover problem, and a variant of the local Hamiltonian problem with hybrid classical-quantum ground states.

back to QIC online Front page