ISSN: 2577-610X

 JDI Homepage
 Guidelines for Authors
 JDI Online

Subscribers: to view a paper, simply click on the title of the paper, the pdf (or ps or zip file) file will pup up on your screen. If you have any problem to access the files, please check with your librarian or contact jdi@rintonpress.com      To subscribe to JDI, please click Here.

 

Journal of Data Intelligence  ISSN: 2577-610X      published since 2020
Vol.3 No.1  February, 2022 

CQA Transformer Models in the Home Improvement Domain (pp131-148)
        
Macedo Maia and Markus Endres
         
doi:
https://doi.org/10.26421/JDI3.1-3
Abstracts: To find answers for subjective questions about many topics through Q\&A forums, questioners and answerers can cooperatively help themselves by sharing their doubts or answers based on their background and life experiences. These experiences can help machines redirect questioners to find better answers based on community question-answering models. This work proposes a comparative analysis of the pairwise community answer retrieval models in the home improvement domain considering different kinds of user question context information. Community Question-Answering (CQA) models must rank candidate answers in decreasing order of relevance for a user question.  Our contribution consists of transformer-based language models using different kinds of user information to accurate the model generalisation. To train our model, we propose a proper CQA dataset in the home improvement domain that consists of information extracted from community forums, including question context information. We evaluate our approach by comparing the performance of each baseline model based on rank-aware evaluation measures.
Key words: 
Information Retrieval, Community Question Answering, and Neural Networks