Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.9 No.3&4  March 2009 

Scalable, efficient ion-photon coupling with phase Fresnel lenses for large-scale quantum computing (pp0203-0214)
          
Erik W. Streed, Benjiamin G. Norton, J.J. Chapman, and David Kielpinski
         
doi: https://doi.org/10.26421/QIC9.3-4-2

Abstracts: Efficient ion-photon coupling is an important component for large-scale ion-trap quantum computing. We propose that arrays of phase Fresnel lenses (PFLs) are a favorable optical coupling technology to match with multi-zone ion traps. Both are scalable technologies based on conventional micro-fabrication techniques. The large numerical apertures (NAs) possible with PFLs can reduce the readout time for ion qubits. PFLs also provide good coherent ion-photon coupling by matching a large fraction of an ion’s emission pattern to a single optical propagation mode (TEM00). To this end we have optically characterized a large numerical aperture phase Fresnel lens (NA=0.64) designed for use at 369.5 nm, the principal fluorescence detection transition for Yb+ ions. A diffractionlimited spot w0 = 350 ± 15 nm (1/e2 waist) with mode quality M2 = 1.08 ± 0.05 was measured with this PFL. From this we estimate the minimum expected free space coherent ion-photon coupling to be 0.64%, which is twice the best previous experimental measurement using a conventional multi-element lens. We also evaluate two techniques for improving the entanglement fidelity between the ion state and photon polarization with large numerical aperture lenses.
Key words:  trapped ion quantum computing, phase Fresnel lens, coherent coupling, diffractive optics, large aperture optics

 

¡¡