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In this paper, we focus on the quantum communication complexity of functions of the
form f ◦ G = f(G(X1, Y1), . . . , G(Xn, Yn)) where f : {0, 1}n → {0, 1} is a symmetric

function, G : {0, 1}j × {0, 1}k → {0, 1} is any function and Alice (resp. Bob) is given
(Xi)i∈[n] (resp. (Yi)i∈[n]). Recently, Chakraborty et al. [STACS 2022] showed that

the quantum communication complexity of f ◦G is O(Q(f)QCCE(G)) when the parties

are allowed to use shared entanglement, where Q(f) is the query complexity of f and
QCCE(G) is the exact communication complexity of G.

In this paper, we first show that the same statement holds without both shared entan-

glement and shared randomness, which generalizes their result. Based on the improved
result, we next show tight upper bounds on f◦AND2 for any symmetric function f (where

AND2 : {0, 1} × {0, 1} → {0, 1} denotes the 2-bit AND function) in both models: with

shared entanglement and without shared entanglement. This matches the well-known
lower bound by Razborov [Izv. Math. 67(1) 145, 2003] when shared entanglement is

allowed and improves Razborov’s bound when shared entanglement is not allowed.

Keywords: two-party communication, quantum communication complexity, symmetric

predicates

1 Introduction

1.1 Motivation

Communication complexity The model of (classical) communication complexity was

originally introduced by Yao [1]. In this model, there are two players, Alice who receives

x ∈ X and Bob who receives y ∈ Y, and both players individually have computationally

unbounded power. Their goal is to compute a known function f : X × Y → {0, 1} with as

little communication as possible. Due to this simple structure, lower and upper bounds on

communication complexity problems have applications on many other fields such as VLSI de-

sign, circuit complexity, data structure, etc. (See [2, 3] for good references.) Communication

complexity has been investigated in many prior works since its introduction.

In communication complexity, Set-Disjointness (DISJn(x, y) = ¬
∨
i∈[n](xi ∧ yi)), Equality

(EQn(x, y) = ¬
∧
i∈[n](xi ⊕ yi)), and Inner-Product function (IPn(x, y) =

⊕
i∈[n](xi ∧ yi))

are three of the most well-studied functions. Denoting the private-coin randomized commu-

nication complexity of a function f (with error ≤ 1/3) as CC(f), it has been shown that

CC(DISJn) = Θ(n), CC(IPn) = Θ(n) and CC(EQn) = Θ(log n) hold. Note that if shared

randomness between the two parties is allowed, CCpub(DISJn) = Θ(n), CCpub(IPn) = Θ(n)
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918 Matching upper bounds on symmetric predicates in quantum communication complexity

and CCpub(EQn) = Θ(1) holdawhere CCpub(f) denotes the randomized communication com-

plexity of a function f with error ≤ 1/3 and with shared randomness. Observing from

CC(EQn) 6= CCpub(EQn), we see that shared randomness sometimes enables to reduce the

communication complexity. Therefore, we need to carefully treat the effect of shared ran-

domness when analyzing the communication complexity of functions. (Note that if CCpub(f)

is strictly larger than O(log n), Newman’s theorem [8] tells us that CCpub(f) = O(CC(f))

holds.)

In 1993, Yao [9] introduced the model of quantum communication complexity based on

the model of classical communication complexity. The main difference between the clas-

sical and quantum model is that Alice and Bob use quantum bits to transmit their in-

formation in the quantum model. As quantum information science has been growing up

rapidly, quantum communication complexity has been widely studied [10, 11, 12, 13]. In

the case of quantum communication complexity, the three functions mentioned above satisfy

QCC(DISJn) = Θ(
√
n) [14, 15], QCC(IPn) = Θ(n) [16] and QCC(EQn) = Θ(log n) [17] ,

where QCC(f) denotes the private-coin quantum communication complexity of a function

f . Note that in private-coin quantum communication complexity, Alice and Bob use neither

shared entanglement nor shared randomness. If Alice and Bob have shared entanglement,

QCC∗(DISJn) = Θ(
√
n) [14, 15], QCC∗(IPn) = Θ(n) [16] and QCC∗(EQn) = Θ(1) [7] hold

where QCC∗(f) denotes the quantum communication complexity of the function f when

shared entanglement is allowed. Even though the power of entanglement is not significant in

these examples, careful treatment of shared entanglement is important since many non-trivial

properties of entanglement have been witnessed (e.g., [18, 19, 20, 21, 13]), including Ref. [21]

that shows Newman’s theorem [8] does not hold in case of shared entanglement.

Composed functions In both classical and quantum communication complexity, many

important functions have the form

f ◦G : (X,Y ) 7→ f((G(X1, Y1)), . . . , G(Xn, Yn)) ∈ {0, 1}

where X = (Xi)i∈[n] ∈ {0, 1}nj , Y = (Yi)i∈[n] ∈ {0, 1}nk, f : {0, 1}n → {0, 1} and G :

{0, 1}j × {0, 1}k → {0, 1}. This fact is already observed in the three of the most well-studied

functions: Set-Disjointness (¬ORn ◦ AND2), Equality (ANDn ◦ XOR2), and Inner-Product

function (XORn ◦ AND2). As a natural consequence of its importance, functions of this form

have been investigated deeply [22, 23, 24] in both classical and quantum communication

complexity. Even though the functions f ◦ G are in general difficult to analyze in detail

because of their generality, the analysis may become simpler when G has a simpler form. Let

us explain in detail about upper and lower bounds on the quantum communication complexity

when G is a simple function such as AND2, XOR2. In the case of upper bounds, Buhrman

et al. [25] showed QCC(f ◦ G) = O(Q(f) log n) holds when G ∈ {AND2, XOR2}, where

Q(f) denotes the bounded error query complexity of a function f . Applying this result, we

immediately get QCC(DISJn) = O(
√
n log n) because Q(ORn) = O(

√
n) holds by Grover’s

algorithm. This is an important result since it shows that the fundamental function DISJn can

be computed more efficiently than in classical scenario (recall CCpub(DISJn) = Θ(n)). This

upper bound QCC(DISJn) = O(
√
n log n) was later improved by [26] and finally improved

aThese classical results are shown in [4, 5] for Set-Disjointness, [6] for Inner-product, and [1, 7] for Equality.
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to O(
√
n) by [15]. Ref. [25] gives many important upper bounds for functions f ◦ G. On

the other hand, Razborov [14] treated lower bounds of QCC∗(f ◦ G) and showed several

tight bounds when f is a symmetric function and G is AND2. For example, Ref. [14] shows

QCC∗(DISJn) = Ω(
√
n) and QCC∗(IPn) = Ω(n). Combining the O(

√
n) bound [15] and

Ω(
√
n) bound [14] imply QCC(DISJn) = Θ(

√
n). Our contributions can be understood as a

generalization of these works [25, 14, 15].

As described above, the relation QCC(f ◦G) = O(Q(f) log n) holds when the function G

is either AND2 or XOR2 [25], and this upper bound was then improved to O(
√
n) by Aaronson

and Ambainis [15] when f = ORn. This implies that the log n factor in [25] is not required

in the case of Set-Disjointness function. Considering this fact, one may wonder whether the

log n overhead is not required for arbitrary function when G ∈ {AND2,XOR2}. Chakraborty

et al. [27] treated this problem and gave a negative answer. They exhibited a function f that

requires Ω(Q(f) log n) communication to compute f◦XOR2. This means that the upper bound

O(Q(f) log n) in [25] is tight for generic functions. Interestingly, their subsequent work [28]

generalized the result and proved the log n overhead is not required when f is a symmetric

function, even though their protocol crucially uses shared entanglement. In this paper, we

focus on functions of the form SYM ◦ G where SYM is a symmetric function. As described

below in Section 1.2 and Section 1.3, our first result generalizes the paper [28] and our second

result shows a tight lower and upper bound on the quantum communication complexity of

such functions SYM ◦G when G = AND2.

1.2 First result (Theorem 1): On improving the result [28]

As mentioned above, the paper [28] showed that the log n factor in O(Q(f) log n) upper bound

is not required when we focus on a symmetric function f = SYM. More precisely, it is shown

in Ref. [28] that there exists a protocol for a function SYM ◦ G with O(Q(SYM)QCCE(G))

qubits of communication (QCCE(G) denotes the exact communication complexity of G) which

uses shared entanglement. Even though the amount of shared entanglement in their protocol

is not so large, there are cases when the amount of the entanglement is significantly larger

than the communication cost O(Q(SYM)QCCE(G)) as stated in [28, Remark 4]. Thus, in

general shared entanglement can not be included as a part of the communication in their

protocol. We improve their result and show that the same statement holds even without any

shared entanglement. That is, we show the following theorem.

Theorem 1. For any symmetric function f : {0, 1}n → {0, 1} and any two-party function

G : {0, 1}j × {0, 1}k → {0, 1},

QCC(f ◦G) ∈ O(Q(f)QCCE(G)).

Proof technique In the paper [28], the desired protocol is constructed by employing a new

technique called noisy amplitude amplification, which needs a certain amount of entanglement

shared between Alice and Bob. Based on the noisy amplitude amplification technique, Ref. [28]

shows the following theorem.

Theorem ([28, Theorem 21]). Suppose Alice (resp. Bob) is given (Xi)i∈[n] ∈ {0, 1}jn (resp.

(Yi)i∈[n] ∈ {0, 1}kn). There is a protocol which satisfies the following conditions:

• The protocol uses O(
√
nQCCE(G)) qubits of communication and dlog ne EPR pairs.
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• The protocol finds the coordinate i satisfying G(Xi, Yi) = 1 with probability 99/100 when

such i exists, and outputs “No” with probability 1 when no such i exists.

Using this protocol as a subroutine, the authors of Ref. [28] constructed the main protocol

for f ◦G, which inherently requires a certain amount of the entanglement.

On the other hand, in the case of Set-Disjointness, Aaronson and Ambainis [15, The-

orem 7.1] showed a protocol with O(
√
n) qubits of communication which does not use any

shared entanglement but does find a coordinate i satisfying xi∧yi = 1 with probability 99/100.

In their protocol, Alice is given input x ∈ {0, 1}n and Bob is given input y ∈ {0, 1}n before-

hand, and they treat the inputs as if its coordinates belong to [n1/3]×[n1/3]×[n1/3]. After this

step, they communicate with O(
√
n) qubits and output i = (̃i, j̃, k̃) ∈ [n1/3]× [n1/3]× [n1/3]

satisfying xi ∧ yi = 1 with probability 99/100. This implies that in their protocol Alice and

Bob do not share any quantum state or randomness before the execution of the protocol, and

therefore their protocol does not use any shared entanglement.

Based on the construction of the protocol in [15] rather than the noisy amplitude ampli-

fication technique used in [28], we successfully construct a generalized version of the above

theorem in Proposition 2 which does not require any shared entanglement. Once we show

the generalized version, the rest is shown in a similar manner as in [28], which is described

in Section 4. Thus, we obtain the protocol for SYM ◦ G using O(Q(SYM)QCCE(G)) qubits

which does not use any shared entanglement.

1.3 Second result (Theorem 2, 3): On tight upper bounds for SYM ◦ AND2

In our second result, we focus on tight upper bounds on the quantum communication com-

plexity of SYM ◦ AND2. We first note here that the paper [28] and our first result already

exhibit protocols with O(Q(SYM)) qubits which are more efficient than the protocol in [25]

with O(Q(SYM) log n) qubits. However, even a protocol with O(Q(SYM)) qubits of communi-

cation does not generally give a tight upper bound. For example, the quantum communication

complexity of ANDn ◦ AND2 is O(1) but Q(ANDn) = Θ(
√
n). Therefore, we need to develop

another technique to show a tight upper bound.

In this framework, Razborov [14] and Sherstov [29] showed the following strong result,

based on a simple fact that for any symmetric function SYM, there is a corresponding function

D satisfying SYM(x) = D(|x|) where |x| denotes the Hamming weight of a bit string x.

Theorem ([14, Theorem 2.1] and [29, Theorem 1.1]). Let SYMn : {0, 1}n → {0, 1} be a

symmetric function and D : {0, . . . , n} → {0, 1} be a function satisfying SYMn(x) = D(|x|).

Define

`0(D) = max
{
` | 1 ≤ ` ≤ n/2 and D(`) 6= D(`− 1)

}
,

`1(D) = max
{
n− ` | n/2 ≤ ` < n and D(`) 6= D(`+ 1)

}
.

Then we have QCC∗(SYMn ◦ AND2) ∈ Ω(
√
n`0(D) + `1(D)) and QCC(SYMn ◦ AND2) ∈

O({
√
n`0(D) + `1(D)} log n).

This theorem already shows the nearly tight bound QCC∗(SYMn◦AND2) = Θ̃(
√
n`0(D)+

`1(D)) up to a multiplicative log n factorb. To show an exact tight upper bound, it is thus

sufficient to create a protocol with O(
√
n`0(D)+`1(D)) qubits of communication by removing

bThe tilde notation Θ̃ hides the multiplicative logn factor.
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the log n factor. In this paper, we successfully show that the multiplicative log n factor is not

required in the model with shared entanglement. That is, we get the following theorem.

Theorem 2. For any symmetric function SYMn : {0, 1}n → {0, 1}, QCC∗(SYMn ◦ AND2) ∈
O(
√
n`0(D) + `1(D)) holds.

In the model without shared entanglement, we also show a similar statement, albeit with

an additive log log n factor. Thus we show

Theorem 3. For any symmetric function SYMn : {0, 1}n → {0, 1}, QCC(SYMn ◦ AND2) ∈
O(
√
n`0(D) + `1(D) + log log n) holds.

This shows, for the first time, the tight relation QCC∗(SYMn ◦ AND2) = Θ(
√
n`0(D) +

`1(D)) in the model with shared entanglement, matching the lower bound by [14, 29]. In

the model without shared entanglement, however, there is still a log log n gap between the

communication cost of our protocol and the lower bound [14, 29]. To fill this gap, we also

show that our protocol without shared entanglement is in fact optimal:

Proposition 1. For any non-trivial symmetric function fn : {0, 1}n → {0, 1},

• if the function fn satisfies `0(Dfn) > 0 or `1(Dfn) > 1,

QCC(fn ◦ AND2) ∈ Ω(
√
n`0(Dfn) + `1(Dfn) + log log n)

holds.

• Otherwise (If fn satisfies `0(Dfn) = 0 and `1(Dfn) ≤ 1), QCC(fn◦AND2) ∈ Θ(1) holds.

In the proof of Proposition 1, the fooling set argument, a standard technique in commu-

nication complexity, plays a fundamental role.

Proof technique Let us now explain the main idea for the desired protocol used in Theo-

rem 2 and Theorem 3. To create the desired protocol for SYM◦AND2, we first decompose the

symmetric function SYM(x) = D(|x|) into the two symmetric functions SYM0(x) := D0(|x|)
and SYM1(x) := D1(|x|) as follows:

D0(m) :=

{
D(m) if m ≤ `0(D)

0 otherwise
, D1(m) =

{
D(m) if m > n− `1(D)

0 otherwise
.

Note that the function D takes a constant value on the interval [`0(D), n−`1(D)]. As discussed

in Section 5, it turns out that computing SYM0◦AND2 and SYM1◦AND2 separately is enough

to compute the entire function SYM ◦ AND2. Therefore, we only need to design two distinct

protocols: one protocol for SYM0 ◦ AND2 and the other protocol for SYM1 ◦ AND2. We now

explain how to design the two protocols.

• To compute SYM0 ◦AND2, we simply use our first result. This uses O(
√
n`0(D)) qubits

of communication since Q(SYM0) = O(
√
n`0(D)) holds by [30, Theorem 4.10].

• To compute SYM1 ◦ AND2, Alice and Bob directly compute the number of elements

in the set {i ∈ [n] | AND2(xi, yi) = 1} under the conditioncmin{|x|, |y|} ≥ n − `0(D).

cIf the condition does not hold, SYM1 ◦ AND2(x, y) must be zero. Alice and Bob check this condition with
only two bits of communication.
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By taking the negation on the inputs, this problem is reduced to the computation of

the number of elements in the set {i ∈ [n] | xi = 0 or yi = 0} under the condition

min{|x|, |y|} ≤ `0(D). In fact, this problem and related problems have been analyzed in

several works [31, 32, 33, 34] and it is shown in [32, Theorem 3.1] that O(`0(D)) classical

communication is sufficient when shared randomness is allowed (and the additional

O(log log n) bits of communicationdare required to convert the shared randomness into

private randomness).

Combining the above protocols, we create the desired protocol that computes SYM ◦ AND2

with O(
√
n`0(Df )+`1(Df )) communication. One thing which should be noted is that as seen

in the above protocol, what Alice and Bob needed to share beforehand is shared randomness,

not shared entanglement. This means that we in fact show the upper bound O(
√
n`0(Df ) +

`1(Df )) in a weaker communication model where shared randomness is allowed but shared

entanglement is not allowed.

1.4 Organization of the paper

In Section 2, we list several notations and facts used in this paper. In Section 3, we generalize

the protocol for Set-Disjointness [15] and create a useful protocol which is used for our main

results. In Section 4, we treat the first result and show Theorem 1. In Section 5, we treat the

second result and show Theorem 2 and Theorem 3.

2 Preliminaries

Model of communication A natural model of quantum communication (without shared

entanglement) between Alice and Bob for computing f : X × Y → Z is as follows:

1. Alice is given x ∈ X and Bob is given y ∈ Y. The entire registers are initially set to

|0〉nAA |0〉C |0〉
nB
B for some positive integers nA, nB .

2. Alice performs a unitary operator on AC which depend on her input x,.

3. Bob performs a unitary operator on BC which depend on his input y,.

... Step 2 and 3 are repeated for a specified number of rounds.

4. Finally, both players perform an individual measurement on the register A for Alice and

B for Bob and output answers based on the outcomes.

In the model with shared entanglement, the initial registers are instead set to |ψ〉AB |0〉C for

a pure state |ψ〉. Any other natural models considered in literature [9, 10, 35] have essentially

the same power as of this model.

For any function f , we denote the quantum communication complexity of zero-error proto-

cols, the bounded-error quantum communication complexity (with error ≤ 1/3) without shared

entanglement, the bounded-error quantum communication complexity (with error ≤ 1/3) with

dIn this case, min{|x|, |y|} ≥ n − `0(D) holds and therefore Newman’s theorem tells us that O(log log #{x |
|x| ≥ n− `0(D)}) bits simulates the shared randomness. As shown in Section 5, the additional bits required
are in fact bounded by O(log logn).
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shared entanglement of a function f by QCCE(f),QCC(f) and QCC∗(f) respectively. Triv-

ially, it holds that QCC∗(f) ≤ QCC(f) ≤ QCCE(f). We also denote the bounded-error query

complexity of a function f by Q(f). For a n-bit string x, we denote the bitwise negation of

x by ¬x = (¬x1, . . . ,¬xn).

Symmetric function Here we list several important facts about symmetric functions. For

any symmetric function f , f can be represented as f(x) = Df (|x|) using some function

Df : {0, 1, . . . , n} → {0, 1}. Denoting

`0(Df ) = max
{
` | 1 ≤ ` ≤ n/2 and Df (`) 6= Df (`− 1)

}
,

`1(Df ) = max
{
n− ` | n/2 ≤ ` < n and Df (`) 6= Df (`+ 1)

}
,

prior works [36, 30] show that the query complexity Q(f) of a symmetric function f is char-

acterized as Q(f) = Θ(
√
n(`0(Df ) + `1(Df ))).

3 Communication cost for finding elements

This section is devoted to show Proposition 2, which is the quantum communication version

of [15, Theorem 5.16].

Proposition 2. There is a protocol FIND-MOREk using O(
√

n
kQCCE(G)) qubits and using

shared randomness which satisfies the following:

• The protocol outputs a coordinate i ∈ [n] such that G(Xi, Yi) = 1 w.p. ≥ 99/100 when

there exist at least k such coordinates.

• The protocol answers “there is no such coordinate” w.p. 1 when there is no such coor-

dinate.

• The protocol does not use any shared entanglement.

The proof is given in Section 3.2.

3.1 A key lemma

To show Proposition 2, we first show the following lemma:

Lemma 1. For γ ∈ N, there is a protocol FIND-EXACTγ using O(
√

n
γQCCE(G)) qubits and

shared randomness which satisfies the following:

• The protocol outputs a coordinate i ∈ [n] such that G(Xi, Yi) = 1 w.p. ≥ 99/100 when

there exist exactly k such coordinates for some k ∈ (γ/3, 2γ/3).

• The protocol answers “there is no such coordinate” w.p. 1 when there is no such coor-

dinate.

• The protocol does not use any shared entanglement.

In the proof of Lemma 1, we use Lemma 2 which is a modified protocol of the one given

in [15, Section 7]. See Appendix 1 for the modification.

Lemma 2. There is a protocol FIND-ONE with O(
√
nQCCE(G)) cost which satisfies the

following:
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• The protocol outputs the coordinate i ∈ [n] such that G(Xi, Yi) = 1 w.p. ≥ 99/100 when

such i exists.

• The protocol answers “there is no such coordinate” w.p. 1 when there is no such coor-

dinate.

• The protocol does not use any shared entanglement.

Proof of Lemma 1. We first divide the set {1, . . . , n} into n/γ subsets Aj = {(j − 1)γ +

1, . . . , jγ} (1 ≤ j ≤ n/γ), each containing γ sub-inputs. Using shared randomness, Alice

and Bob pick a set of coordinates {i1, . . . , in/γ} ⊂ [n] where each ij is chosen uniformly at

random from the set Aj . Alice and Bob then perform the protocol FIND-ONE pretending the

inputs are (Xi1 , . . . , Xin/γ ) for Alice and (Yi1 , . . . , Yin/γ ) for Bob. Since FIND-ONE requires

O(
√
nQCCE(G)) qubits of communication for the input length n, this protocol with the input

length n/γ requires O(
√

n
γQCCE(G)) qubits of communication.

We now analyze the correctness probability of this protocol, following the technique used

in [15, Lemma 5.15]. Assume there exist exactly k coordinates satisfying G(Xi, Yi) = 1 and

3k/2 < γ < 3k holds, and let {x1, . . . , xk} ⊂ [n] be the set of such coordinates and I1, . . . , In/γ
be the random variables for picking up i1, . . . , in/γ . Then for any i ∈ [k], there is a unique

j(i) ∈ {1, . . . , n/γ} such that xi ∈ Aj(i), since A1, . . . , An/γ give a partition of the set [n].

Therefore the event

Ei0 := “The coordinate xi0 alone is chosen by I1 · · · In/γ among all x1, . . . , xk.”

is equivalent to “Ij(i0) = xi0 and ∀j 6= j(i0), ∀i ∈ [k] \ {i0}, Ij 6= xi”. We thus obtain

Pr(Ei0) = Pr(Ij(i0) = xi0) · Pr(∀j 6= j(i0), ∀i ∈ [k] \ {i0} Ij 6= xi).

Now observe that the probability: Pr(Ij(i0) = xi0) is equal to 1/γ by definition of Ij , and the

probability: Pr (∀j 6= j(i0), ∀i ∈ [k] \ {i0} Ij 6= xi) satisfies

Pr (∀j 6= j(i0), ∀i ∈ [k] \ {i0} Ij 6= xi) = 1− Pr (∃i ∈ [k] \ {i0} s.t. ∃j 6= ji0 , Ij = xi)

≥ 1−
∑

i∈[k]\{i0}

Pr (∃j 6= ji0 s.t. Ij = xi)

≥ 1− (k − 1)

γ

due to Pr(A) = 1 − Pr(Ac) (the superscript c denotes the complement) and Pr(
⋃
iAi) ≤∑

i Pr(Ai) for any events A and Ai’s. Therefore it follows that

Pr(Ei0) ≥ 1

γ

(
1− k − 1

γ

)
≥ 1

γ

(
1− k

γ

)
.

Considering the events “the coordinate i0 is chosen” are mutually disjoint, we see that

the probability of “exactly one such coordinate is chosen” is at least k/γ − (k/γ)2. Since

3k/2 < γ < 3k holds, we observe that the probability is at least 2/9. This shows the event

“at least one element is chosen” occurs w.p. ≥ 2/9.

Therefore, by the property of FIND-ONE, our new protocol satisfies the following:
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• The protocol outputs the coordinate i ∈ [n] such that G(Xi, Yi) = 1 w.p. Ω(1) when

there exist exactly k such coordinates for some k satisfying 3k/2 < γ < 3k.

• The protocol answers “there is no such coordinate” w.p. 1 when there is no such

coordinate.

• The protocol does not use any shared entanglement.

To amplify the success probability Ω(1) to 99/100, Alice and Bob perform this above protocol

recursively while at each repetition checking if the output iout satisfies G(Xiout , Yiout) = 1.

This repetition uses only some constant overhead on the communication cost and hence we

obtain the desired statement.

3.2 Proof of Proposition 2

Using the protocol FIND-EXACTγ , we show Proposition 2 as follows.

Proof of Proposition 2. The protocol FIND-MOREk is executed as follows:

(1) For j = 0 to log2(n/k), Alice and Bob perform FIND-EXACTγj where γj = 2jk.

(2) As shared randomness, Alice and Bob pick one coordinate i uniformly at random from

the set [n] and check if G(Xi, Yi) = 1. This is repeated for O(1) times.

We first analyze the communication cost of this protocol. The first step requires

log2(n/k)∑
j=0

O

(√
n

2jk
QCCE(G)

)
= O

(√
n

k
QCCE(G)

) log2(n/k)∑
j=0

1

2j/2
= O

(√
n

k
QCCE(G)

)
qubits of communication. The second step requires O(QCCE(G)) qubits of communication.

Therefore, in total, O
(√

n
kQCCE(G)

)
qubits are used in this protocol.

Next we analyze the correctness probability of this protocol. Let k∗ ≥ k be the number

of coordinates satisfying G(Xi, Yi) = 1. If k∗ ≤ n/3, then there exists j satisfying 3k∗/2 <

γj < 3k∗. Therefore, FIND-EXACTγj finds the desired coordinate w.p. ≥ 99/100. On the

other hand, if k∗ > n/3, the second step finds the desired coordinate w.p. 1/3. Then O(1)

repetitions increase the success probability to 99/100.

4 Communication protocol for symmetric functions

In [28, Theorem 22 and Theorem 25], the following theorem has been shown (with a slightly

different expression):

Theorem ([28, Theorem 22 and Theorem 25]). Suppose FIND-MOREk uses m EPR-pairs as

shared entanglement and arbitrarily amount of shared randomness. Then for any symmetric

function f : {0, 1}n → {0, 1} and any two-party function G : {0, 1}j × {0, 1}k → {0, 1}, there

is a protocol with O(Q(f)QCCE(G)) qubits which satisfies the following:

• The protocol successfully computes f ◦G with probability ≥ 99/100.

• The protocol uses m ·O(`0(Df ) + `1(Df )) EPR-pairs as shared entanglement.

• The protocol uses O(log n) bits of shared randomness.
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As is shown in Proposition 2, our modified protocol FIND-MOREk does not use any shared

entanglement. Therefore, we set m = 0 in the statement above and obtain the following theo-

rem. (Note that O(log n) bits of shared randomness are included in a part of communication

since the O(log n) bits are negligible compared to Q(f) ≥ Ω(
√
n) when f is not trivial.)

Theorem 1. For any symmetric function f : {0, 1}n → {0, 1} and any two-party function

G : {0, 1}j × {0, 1}k → {0, 1},

QCC(f ◦G) ∈ O(Q(f)QCCE(G)).

5 Tight upper bound for symmetric functions

In this section, we show the following two theorems:

Theorem 2. For any symmetric function SYMn : {0, 1}n → {0, 1}, QCC∗(SYMn ◦ AND2) ∈
O(
√
n`0(D) + `1(D) holds.

Theorem 3. For any symmetric function SYMn : {0, 1}n → {0, 1}, QCC(SYMn ◦ AND2) ∈
O(
√
n`0(D) + `1(D) + log log n) holds.

To show these theorems, we use the following protocol that is a modification of the protocol

given in [32, Theorem 3.1]. For completeness, we describe the modification in Appendix B.

Proposition 3. Suppose the inputs x, y ∈ {0, 1}n satisfy max{|x|, |y|} ≤ k. There is a public

coin classical protocolewith O(k) bits of communication which computes the set {i|xi = yi =

1} ⊂ [n] w.p. 99/100.

Following the technique used in [14, Section 4], we prove Theorem 2 and Theorem 3 as

follows:

Proof of Theorem 2 and Theorem 3. Let us first describe some important facts based on the

arguments in [14, 29]. For any symmetric function fn, the corresponding function Dfn is

constant on the interval [`0(Dfn), n− `1(Dfn)]. Without loss of generality, assume Dfn takes

0 on the interval. (If Dfn takes 1 on the interval, we take the negation of Dfn .) Defining D0

and D1 : {0, . . . , n} → {0, 1} as

D0(m) =

{
Dfn(m) if m ≤ `0(Dfn)

0 otherwise
, D1(m) =

{
Dfn(m) if m > n− `1(Dfn)

0 otherwise
,

Dfn = D0 ∨D1 holds. Therefore, by defining f0n(x) := D0(|x|) and f1n(x) := D1(|x|), we get

fn ◦ AND2 = (f0n ◦ AND2) ∨ (f1n ◦ AND2). This means, computing f0n ◦ AND2 and f1n ◦ AND2

separately is sufficient to compute the entire function fn ◦ AND2. As another important fact

needed for our explanation, we note that the query complexity of f0n equals to O(
√
n`0(Dfn))

which is proven in [36].

From now on, we describe two protocols: one protocol for the computation of f0n and the

other one for the computation of f1n.

• Protocol for f0n: We simply apply the protocol of Theorem 1 with G = AND2 (note

that f0n is a symmetric function). This protocol uses O(
√
n`0(Dfn)) qubits because

Q(f1n) = Θ(
√
n`0(Dfn)) holds.

eNote that this protocol may use a large amount of shared randomness.
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• Protocol for f1n: First, Bob sends Alice one bit: 1 if |¬y| ≤ `1(Dfn) and 0 otherwise.

If Alice receives 1 and |¬x| ≤ `1(Dfn) holds, they perform the protocol of Proposition 3

with the inputs ¬x and ¬y. Otherwise, min{|x|, |y|} < n− `0(Dfn) holds and therefore

f0n ◦AND2(x, y) must be zero by the definition of D1. After the execution of the protocol

of Proposition 3, Alice and Bob know the set {i ∈ [n] | xi = yi = 0}. Next, Alice sends

|¬x| and Bob sends |¬y| using log `0(Dfn) communication, and they finally compute

#{i ≤ n | xi = yi = 1} as #{i ≤ n | xi = yi = 1} = n + #{i ∈ [n] | xi = yi =

0} − |¬x| − |¬y|. This protocol uses O(`1(Dfn)) communication bits.

We then evaluate the cost for public coins. Even though the execution of this protocol

may require much shared randomness, Newman’s theorem [8] ensures that O(log log |S|)
bits are sufficient when the inputs x, y belong to a set S. Since |¬x|, |¬y| ≤ `1(Dfn) holds

when executed and using the fact #{x ∈ {0, 1}n | |¬x| ≤ k} ≤ nk, we conclude that

O(log(log n`1(Dfn ))) = O(log `1(Dfn)+log log n) bits of shared randomness are sufficient.

Moreover, since O(log `1(Dfn)) bits of shared randomness are negligible compared to

O(`1(Dfn)) bits in communication and therefore included as a part of communication

with no additional communication cost, we only need to use O(log log n) bits as a shared

randomness.

Combining these two protocols, we get the desired protocol with O(
√
n`0(Dfn)+`1(Dfn)) cost

which uses O(log log n) public coins. This shows QCC∗(fn◦AND2) ∈ O(
√
n`0(Dfn)+`1(Dfn))

and QCC(fn ◦ AND2) ∈ O(
√
n`0(Dfn) + `1(Dfn) + log log n) by Alice sending O(log log n)

random bits instead of the shared randomness.

By combining the arguments we showed so far, we obtain the tight bound QCC∗(fn ◦
AND2) ∈ Θ(

√
n`0(Dfn) + `1(Dfn)) on the communication model with shared entanglement.

On the model without shared entanglement, our bound QCC(fn ◦ AND2) ∈ O(
√
n`0(Dfn) +

`1(Dfn) + log log n) still have the additive log log n difference from the lower bound. We

next show this upper bound is indeed optimal by using a standard technique, the fooling set

argument.

Proposition 1. For any non-trivial symmetric function fn : {0, 1}n → {0, 1},

• if the function fn satisfies `0(Dfn) > 0 or `1(Dfn) > 1,

QCC(fn ◦ AND2) ∈ Ω(
√
n`0(Dfn) + `1(Dfn) + log log n)

holds.

• Otherwise (i.e., if fn satisfies `0(Dfn) = 0 and `1(Dfn) ≤ 1), QCC(fn ◦ AND2) ∈ Θ(1)

holds.

Proof. Let us first prove that QCC(fn◦AND2) ∈ Θ(1) holds when `0(Dfn) = 0 and `1(Dfn) ≤
1 hold. In this case, there are only two types of the functions: fn = ANDn or fn = ¬ANDn. In

either case of the functions, Alice and Bob only need to send one single bit expressing whether

x = (1, . . . , 1) for Alice (y = (1, . . . , 1) for Bob). Therefore we obtain QCC(fn ◦AND2) ∈ Θ(1)

since a lower bound QCC(fn ◦ AND2) ∈ Ω(1) is trivial.

The rest is to show QCC(fn◦AND2) ∈ Ω(
√
n`0(Dfn)+`1(Dfn)+log log n) holds assuming

`0(Dfn) > 0 or `1(Dfn) > 1. First, we note that the log log n factor becomes negligible
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comparing to
√
n`0(Dfn)+`1(Dfn) when `0(Dfn) > 0 holds. This means that the well-known

lower bound Ω(
√
n`0(Dfn) + `1(Dfn)) [14] already gives a tight lower bound. Therefore, we

only need to show QCC(fn ◦ AND2) ∈ Ω(`1(Dfn) + log log n) holds assuming `0(Dfn) = 0.

Moreover, the lower bound QCC∗(fn ◦ AND2) ∈ Ω(
√
n`0(Dfn) + `1(Dfn)) shown in [14]

implies QCC(fn ◦AND2) ∈ Ω(`1(Dfn)). Therefore, it is sufficient to show QCC(fn ◦AND2) ∈
Ω(log log n) when `0(Dfn) = 0 and `1(Dfn) > 1 hold.

Assuming `0(Dfn) = 0, `1(Dfn) > 1 and Dfn ≡ 0 on [`0(Dfn), n − `1(Dfn)] without loss

of generality, we show QCC(fn ◦ AND2) ∈ Ω(log log n). To show this, we use the fooling set

argument:

Theorem 4 (Fooling set argument [2, 3]). For a function f : X × Y → {0, 1}, assume that

a subset S ⊂ X × Y satisfies

• for any (x, y) ∈ S, f(x, y) = 1,

• for any (x, y), (x′, y′) ∈ S, (x, y) 6= (x′, y′)⇒ f(x′, y) = 0 or f(x, y′) = 0.

Then the deterministic communication complexity of f is larger or equal to log |S|.

Define

FSn := {(x, y) ∈ {0, 1}n × {0, 1}n | x = y and |¬x| = `1(Dfn)− 1}.

Then we see that for any (x, y) ∈ FSn, fn ◦ AND2(x, y) = 1 and for any (x, y), (x′, y′) ∈ FSn,

(x, y) 6= (x′, y′) implies fn ◦AND2(x, y′) = fn ◦AND2(x′, y) = 0. Therefore, the deterministic

communication complexity DCC(fn ◦ AND2) satisfies

DCC(fn ◦ AND2) ≥ log2 |FSn|

by the fooling set argument. As shown in [37, Theorem 4], it is well-known that QCC(f) ≥
log DCC(f) for any function f . Therefore, by observing |FSn| =

(
n

`1(Dfn )−1
)
≥ Ω(n) for

`1(Dfn) > 1, we obtain the desired statement QCC(fn ◦ AND2) ≥ Ω(log log n).
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Appendix A Modification for Lemma 2

Here we describe how the protocol given in [15, Section 7] is modified to the protocol

in Theorem 2. In [15, Section 7], the authors proposed a protocol that finds i ∈ [n] such that

xi ∧ yi = 1 where Alice is given x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n. In the protocol,

Alice and Bob perform the query

OAND : |i, z〉A|i〉B 7→ |i, z ⊕ (xi ∧ yi)〉A|i〉B

for O(
√
n) times and other operations which require O(

√
n) communication. Since the query

operation is implemented using 2-qubits of communication, this protocol requires 2O(
√
n) +

O(
√
n) = O(

√
n) communication.

Our modification for finding i such that G(Xi, Yi) = 1 is simple. We just replace the query

OAND to

OG : |i, z〉A|i〉B 7→ |i, z ⊕G(Xi, Yi)〉A|i〉B .

This protocol indeed finds the desired coordinate i, which is shown in the same manner as

in [15, Section 7]. Let us analyze the communication cost of this protocol. Since QCCE(G)

denotes the exact communication complexity of G, the operation OG is implemented using

2QCCE(G) qubits. (First QCCE(G) communication is used to compute G and the second

QCCE(G) is used to compute reversely and clear the unwanted registers.) Other operations

are the same as in the original protocol and therefore use O(
√
n) communication. Considering

that the operation OG is performed for O(
√
n) times, we see that our modified protocol uses

O(
√
n) + QCCE(G)O(

√
n) = O(QCCE(G)

√
n) qubits of communication.

Appendix B Modification for Proposition 3

In [32, Theorem 3.1], the authors originally showed the following.

Theorem 5. Suppose the inputs x, y ∈ {0, 1}n satisfy max{|x|, |y|} ≤ k. There exists an

O(
√
k)-round constructive randomized classical protocol that outputs the set {i | xi = yi = 1}

with success probability 1 − 1/poly(k). In the model of shared randomness the total expected

communication is O(k).

To modify this theorem for Proposition 3, we need to take care of the success probability

and the expected communication. To take care of the success probability, we first take a
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sufficiently large constant k0 such that for any k ≥ k0, 1/poly(k) ≤ 1/200. If k < k0 holds, the

parties perform the protocol in Theorem 5 with the constant k0. This requires O(k0) expected

communication. Otherwise (i.e., when k > k0 holds), the parties perform the protocol in

Theorem 5 with the constant k, which requires O(k) expected communication. Since k0 is a

constant, the protocol by this modification still requires O(k) expected communication with

error ≤ 1/200.

To convert the expected communication to the worst-case communication, we use Markov

inequality. Suppose this protocol requires C ·k expected communication. Then the probability

of “the communication cost ≥ 200C · k” is less than or equal to 1/200 by Markov inequality.

We create the desired protocol by Alice and Bob aborting communication when its cost gets

200C · k. This modified protocol still have the success probability ≥ 99/100, since the first

modification has the error 1/200 and the second modification affects the error at most 1/200.


