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The signaling dimension of any given physical system represents its classical simulation
cost, that is, the minimum dimension of a classical system capable of reproducing all
the input/output correlations of the given system. The signaling dimension landscape
is vastly unexplored; the only non-trivial systems whose signaling dimension is known –
other than quantum systems – are the octahedron and the composition of two squares.

Building on previous results by Matsumoto, Kimura, and Frenkel, our first result
consists of deriving bounds on the signaling dimension of any system as a function of
its Minkowski measure of asymmetry. We use such bounds to prove that the signaling
dimension of any two-dimensional system (i.e. with two-dimensional set of admissible
states, such as polygons and the real qubit) is two if and only if such a set is centrally
symmetric, and three otherwise, thus conclusively settling the problem of the signaling
dimension for such systems.

Guided by the relevance of symmetries in the two dimensional case, we propose a
branch and bound division-free algorithm for the exact computation of the symmetries
of any given polytope, in polynomial time in the number of vertices and in factorial
time in the dimension of the space. Our second result then consist of providing an
algorithm for the exact computation of the signaling dimension of any given system, that
outperforms previous proposals by exploiting the aforementioned bounds to improve its
pruning techniques and incorporating as a subroutine the aforementioned symmetries-
finding algorithm. We apply our algorithm to compute the exact value of the signaling
dimension for all rational Platonic, Archimedean, and Catalan solids, and for the class
of hyper-octahedral systems up to dimension five.

Keywords: signaling dimension, generalized probabilistic theory, GPT, square bit, squit,
extremal measurements, symmetries, branch and bound algorithm

1 Introduction

Generalized probabilistic theories [1] (GPTs), of which quantum theory is an example, provide
the most general model to describe how correlations between observed input and output events
should be computed. In this sense, they all represent generalizations of classical theory. But
what is the classical cost of simulating any given such a GPT by means of classical theory? The
answer to this question is formally given by the signaling dimension (for a recent overview,
see Ref. [2]), that is, the dimension of the smallest classical system that can reproduce all the
input/output correlations that the given system is capable of.
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As such, the signaling dimension of any given classical system is, by definition, equal to
the dimension (e.g. maximum number of perfectly distinguishable states) of such a system.
However, even for systems as familiar as the quantum ones, quantifying the signaling dimen-
sion has been elusive for decades. During all this time, it has been arguably part of the
quantum folklore that the signaling dimension must be equal to the Hilbert space dimension
(once again, the maximum number of perfectly distinguishable states). Finally, in 2015, in a
groundbreaking work [3] Frenkel and Weiner conclusively settled this debate by proving the
correctness of this belief; they did so with an elegant proof that leverages graph theoretical
results.

Frenkel and Weiner’s work fueled further research on the topic. Following their work,
it was shown [4] that there exists GPTs whose systems, while consistent with classical and
quantum theory at the level of space-like correlations, exhibit anomalies – quantifiable as a
superadditivity of the signaling dimension under system composition known as hypersignaling
– in their time-like correlations. In other words, the signaling dimension plays for space-like
correlations a role analog to that played by the no-signaling principle for space-like correlations
(hence the name). That work also lied the foundations for the characterization of the polytope
of input/output classical correlations and the computation of the signaling dimension of any
given system.

Following this line of research, Matsumoto and Kimura [5] proved a very interesting con-
nection between the signaling dimension and the Minkowski measure of asymmetry. Building
on that and on the results of Ref. [4], and applying again graph-theoretical results as in his
previous result, Frenkel [6] recently provided bounds on the signaling dimension as a function
of the dimension of the linear span of the states of the system only. In the same work, the
author also computed the signaling dimension of a simple system whose set of admissible
states forms an octahedron.

At the same time, Doolittle and Chitambar [7] extended the results of Ref. [4] to the
characterization of the polytope of classical correlations. While they cleverly exploit the
symmetries of the polytope to simplify the characterization of its facets (the vertices are
trivial to characterize, but what one typically needs in computations are the facets), their
method still requires the complete and simultaneous enumeration of all the vertices, whose
number grows exponentially in the number of states of the system and factorially in the
dimension of the space. That makes such an approach impractical in most cases.

Recently, it was shown [8] that such an exhaustive enumeration is actually unnecessary if
one is interested in computing the signaling dimension. By exploiting the symmetries [9] (if
any) of the set of admissible states and the structure of the correlation matrices induced on
such a set by the extremal measurements [10, 11, 12] of the system, an algorithm was devised
and implemented that is capable of computing exactly the signaling dimension of systems as
complex as the (hypersignaling) composition of two square systems – typically introduced [13]
to reproduce Popescu-Rohrlich correlations [14] – in a matter of minutes. This result, along
with the aforementioned bounds [6] derived by Frenkel, represents the state of the art of the
signaling dimension problem.

Here, we progress in two directions. First, building on Ref. [6], we provide upper and lower
bounds on the signaling dimension of any given system. We show that, when specified to two-
dimensional systems (any system whose state space is two dimensional, such as polygonal
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systems or the real qubit), our results characterize in closed-form the signaling dimension.
Specifically, we show that the signaling dimension is two for any such a system that is centrally
symmetric; and it is three otherwise. This settles the issue of the signaling dimension for two-
dimensional systems.

The second direction we progress in is the case of systems whose set of admissible states
is a polytope. We provide an exact, branch and bound, division-free algorithm that exactly
characterizes the symmetries of any given polytope in polynomial time in the number of
vertices and in factorial time in the dimension. Our pruning rule provides an heuristic speedup
(while preserving the correctness of the result) over previous proposals [15]. We show how
to exploit such a result, along with the aforementioned bounds, to reduce the complexity of
the exact computation of the signaling dimension, and we apply our algorithm to compute
the exact expression of the signaling dimension for certain rational Archimedean and Catalan
solids and hyper-octahedra, thus generalizing the result obtained by Frenkel [6] for the (three-
dimensional) octahedron.

The paper is structured as follows. In Section 2 we formalize the signaling dimension, we
introduce bounds as a function of the asymmetry, and we conclusively settle the problem of
the signaling dimension for systems with two-dimensional set of admissible states. Guided
by the relevance of the symmetries for the two-dimensional case, in Section 3 we provide an
exact, branch and bound, division-free symmetries-finding algorithm for polytopes in arbitrary
dimension. In Section 4 we address the problem of computing the signaling dimension for
systems whose set of admissible states is a polytope, by providing an algorithm that, exploiting
the aforementioned bounds and symmetries-finding subroutine, exactly computes the signaling
dimension of any given polytopic system in finite time. In Section 5 we apply our algorithm to
the exact computation of the signaling dimension for systems whose set of admissible states
is a rational regular or quasi-regular solid or an hyper-octahedron. We summarize our results
and discuss some open problems in Section 6.

2 Two dimensional systems

In this section, building upon previous results [5, 6] by Matsumoto, Kimura, and Frenkel, we
provide upper and lower bounds on the signaling dimension of any given system as a function
of its central symmetry.

For any given system, whose (convex) set of admissible states we denote with S ∈ R`,
we denote with lin.dim(S) := ` and aff.dim(S) := ` − 1 the linear dimension and the affine
dimension, respectively.

Let us denote with Pm→nS the polytope of m-input/n-output correlations attainable by
system S, that is

Pm→nS :=
{
p
∣∣∣ ∃ {ωi}mi=1 ⊆ S, {ej}

n
j=1 ⊆ E s.t. pi,j = ωi · ej

}
,

where E denotes the set of effects (typically, but not necessarily, the set of linear non-negative
functionals over S). We denote with sig.dim(S) the signaling dimension of S, given by

sig.dim (S) := inf
d∈N

Pm→n
S ⊆Pm→n

d

d, (1)
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for any m and n. It was proven in Ref. [4] that the signaling dimension (for any system whose
S is not trivially a point) is bounded as follows:

2 ≤ sig.dim (S) ≤ lin.dim (S) . (2)

Finally, we denote with asymm(S) the Minkowski measure of asymmetry [16], that is,
the smallest dilation factor needed to cover the mirrored set −S := {−ω | ω ∈ S} up to a
translation, that is

asymm (S) := inf
λ>0
c∈R`

−(S−c)⊆λ(S−c)

λ. (3)

It immediately follows from this definition that

1 ≤ asymm (S) ≤ aff.dim (S) , (4)

where the first inequality is tight (that is, asymm(S) = 1) if and only if S is centrally
symmetric, and the second inequality is tight (that is, asymm(S) = aff.dim(S)) if and only
if S is a simplex.

Notice the formal analogy between the definitions of signaling dimension and asymmetry
in Eqs. (1) and (3). Both quantities represent a “shrinking parameter” for a set, each quantity
being defined as the value of such a parameter at which a particular set inclusion relation is
satisfied. The difference between the two quantities lies in the definitions of such sets: in the
case of the signaling dimension, the set is the polytope Pm→nd of input/output correlations
attainable by a classical system of dimension d; in the case of the asymmetry, it is the set of
admissible states itself.

Notice also the formal analogy between the bounds in Eqs. (2) and (4). However, while
necessary and sufficient conditions for the tightness of the bounds in Eq. (4) are known, neither
necessary nor sufficient conditions for the tightness of Eq. (2) are known. The following lemma
addresses this gap by providing necessary conditions.
Lemma 1. For any system with set S of admissible states, the signaling dimension satisfies

sig.dim (S) ≤ aff.dim (S) if S is centrally symmetric, (5)

and

sig.dim (S) ≥ 3 if S is not centrally symmetric, (6)

or equivalently the first inequality in Eq. (2) is strict if S is not centrally symmetric and the
second inequality is strict if S is centrally symmetric, that is

2 ≤ sig.dim (S) < lin.dim (S) if S is centrally symmetric, (7)

and

2 < sig.dim (S) ≤ lin.dim (S) if S is not centrally symmetric. (8)



Shuriku Kai and Michele Dall’Arno 936

We remark that the equivalence between the Eqs. (5) and (7) follows from the fact that
aff.dim(S) := lin.dim (S) − 1, while the equivalence between the Eqs. (6) and (8) follows
from sig.dim (S) being an integer. We will use Lemma 1 i) in this same section to derive the
signaling dimension of any given two-dimensional system, and ii) in Section 4 to provide a
speedup to the exact computation of the signaling dimension of any given polytopic system.

Proof. The statement simply follows by putting together Eq. (4) with results from Refs. [5]
and [6].

Let us first consider the case when S is centrally symmetric. In this case asym(S) = 1 due
to Eq. (4). Due to Thm. 1 of Ref [5] one has inf. stor(S) = asymm(S) + 1 (we omit here the
definition of the information storage inf. stor(S); the previous equation can be taken as its
definition as a function of the asymmetry asymm(S)). Hence, for centrally symmetric S one
has inf. stor(S) = 2. Due to Thm. 1.2, point (2), of Ref. [6], if inf. stor(S) ≤ aff.dim(S) then
sig.dim(S) ≤ aff.dim(S). Hence, for centrally symmetric S one has sig.dim(S) ≤ aff.dim(S).
Hence, the first part of the statement follows.

Let us then consider the case when S is not centrally symmetric. Then, inf. stor(S) > 2

due to Eq. (4) and Thm. 1 of Ref. [5]. Then, sig.dim(S) > 2 due to sig.dim(S) being an
upper bound to inf. stor(S) (see Ref. [5] or Thm. 1.2, point (1), of Ref. [6]). Hence, the second
part of the statement follows.

Notice that, while central symmetry is necessary for the signaling dimension to saturate
its lower bound sig.dim(S) = 2, such a condition is not sufficient: for instance, Frenkel
showed [6] that the signaling dimension of the octahedral (thus centrally symmetric) system
is three. Analogously, while central asymmetry is necessary for the signaling dimension to
saturate its upper bound sig.dim(S) = lin.dim(S), such a condition is not sufficient: for
instance, it has been shown [4] that the signaling dimension of the composition of two square
systems (which is not centrally symmetric) is five, while its linear dimension is nine.

Despite these considerations, Lemma 1 is strong enough to pin down the signaling dimen-
sion of any two-dimensional system (systems whose affine dimension is two, as is the case e.g.
for polygonal theories and the real qubit) as a function of its geometry only, as shown by the
following corollary.
Corollary 1. Any system S such that aff.dim(S) = 2 has signaling dimension given by

sig.dim (S) =

{
2 if S is centrally symmetric,
3 otherwise.

(9)

Proof. The statement immediately follows by a direct application of Lemma 1 and of Eq. (2).

For instance, for regular polygonal systems with m vertices (states), the signaling dimen-
sion is two if m is even and three otherwise.

3 An exact symmetries-finding algorithm

Motivated by the role played by the symmetries in the computation of the signaling dimension
of two-dimensional systems, as shown in the previous section, in this section we address the
problem of finding the symmetries of any given point set. How this problem fits within the
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bigger problem of computing the signaling dimension will be illustrated in the next section.
A trivial variation of our approach also provides a way to test the congruence of two given
point sets; that is, whether there exists an orthogonal transformation mapping the one into
the other.

Previous literature [17, 18, 19, 20] approached the symmetry-finding problem from the
geometric viewpoint, that is, by looking for orthogonal transformations (linear transforma-
tions whose matrix representation is orthogonal, that is, angle- and length-preserving) that
act as permutations of the point set. That is to say, such algorithms depend on the field
structure of their input. To this aim, they assume a real computational model, that is, an un-
physical machine that can exactly store any real number and can exactly perform arithmetic,
trigonometric, and other functions over reals in finite time.

In Ref. [15], in the unrelated context of quantum guesswork, the symmetries-finding prob-
lem was instead approached from the combinatorial viewpoint, that is, by looking for permu-
tations of the labels of the set that act as orthogonal transformations. By using established
results on Gram matrices, it was possible to avoid explicitly dealing with orthogonal trans-
formations altogether. That way, a symmetries-finding algorithm was presented that only
depends on the weaker ring structure (that is, the operation of division is not assumed). That
approach therefore corresponds to an integer computational model that solely assumes the
ability to store integer numbers and to perform additions and multiplication in finite time
(any potential buffer overflow can be detected and the computation can be restarted by al-
locating additional memory), thus allowing for closed-form analytical solutions on physical
machines.

The number of permutations grows factorially in the number of points, hence the complex-
ity of any algorithm based on a naive exhaustive search is factorial. However, by exploiting a
well-known rigidity property of simplices, in Ref. [15] it was also shown that without loss of
generality it suffices to search over a subset of permutations whose size only grows polynomi-
ally in the number of points, although still factorially in the dimension of the space.

To amend this factorial scaling in the dimension, we propose here a branch and bound
algorithm that pushes forward the ideas of Ref. [15] by first reframing the search over such
permutations as the exploration of a tree, and then “pruning” those branches that can provably
be shown not to lead to any symmetry. Our algorithm therefore provides a heuristic speedup
over Ref. [15] (however, we recall that the final result is guaranteed to be exact) and, generally,
a better scaling in the dimension of the space, although the worst case scaling is still factorial.

A symmetry can be represented as an orthogonal transformation O (that is, a length- and
angles-preserving transformation) that acts as a permutations on the labels of the extremal
vectors in set S. In formula

Oωi = ωσ(i), (10)

for any i, where σ denotes a permutation of indexes i’s.
Equation (10) shows that symmetries can be represented as permutations of the labels

that act as orthogonal matrices; the one-to-one mapping between orthogonal transformations
and label permutations is guaranteed by S being a spanning set. If one also recalls that two
labeling are related by an orthogonal matrix if and only if the corresponding Gram matrices
are identical, one immediately has an equivalent condition for permutation σ to be a symmetry,
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that is

ωi · ωj = ωσ(i) · ωσ(j) (11)

for any i and j. Notice that the condition in Eq. (11) is purely combinatorial, as opposed to
the geometric condition in Eq. (10).

Such was the combinatorial approach adopted to find symmetries in Ref. [15]. The al-
gorithm therein i) iterated over all permutations of aff.dim(S) vectors through Heap’s or
Johnson-Trotter’s algorithms; ii) tested Eq. 11 for such a permutation; finally, iii) extended
the test to all the remaining vectors in polynomial time. Overall, the algorithm’s complexity
was polynomial in m (the number of vectors) and factorial in aff.dim(S).

Here, we discuss a different, branch-and-bound way of generating all permutations. The
generation of all the permutations σ can be achieved, with factorial complexity, by recursively
visiting the nodes of a tree; for instance, when m = 3 the tree could be as follows:

·

v1

v1v2

v1v2v3

v1v3

v1v3v2

v2

v2v1 v2v3

v3

At the first step, the algorithm sets the first point in the permutation, it compares the
(so far, 1× 1) Gram matrix with G(v1); if they coincide, the algorithm recursively calls itself,
chooses the second point in the permutation, and compares the (now 2×2) Gram matrix with
G(v1, v2). The algorithm proceeds this way in a depth-first exploration of the tree. Once it
gets to a leaf, the same procedure as in Ref. [8] is followed. However, with respect to Ref. [8],
the algorithm does not necessarily reach each leaf, since the failure of the aforementioned
comparison of Gram matrices on the ancestor of a leaf proves that the leaf does not represent
a symmetry without the need to reach it. For instace, in the tree above, such a comparison
failed at nodes (v2v1), (v2v3), and (v3). This procedure is described in Algorithm 1.

4 Polytopic systems

In this section, we address the problem of computing exactly the signaling dimension of any
given system whose state space is a polytope. We stress that our algorithm is exact, that is,
if the system in input is represented exactly (for instance, if its set S of admissible states is a
rational polytope), then the algorithm outputs in finite time the exact value of its signaling
dimension.

We assume the sets S and E of admissible states and effects are given. If only one of them
is given, the other can be found, by applying the so-called no-restriction hypothesis, using
the techniques based on linear programming described in Ref. [8]. We also assume that the
extremal measurements are known. If not, they can be found using the techniques, also based
on linear programming, described in the same reference.
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Algorithm 1 Symmetries finding (branch and bound)
Require: (v1, . . . vm) with G(v1, . . . vd) invertible and (vd+1, . . . , vm) = order(v1, . . . vd)
function Node(v)

if G(v1, . . . v|v|) 6= G(v) then return
end if
if |v| < d then

for v 6∈ v do
Node(concat(v, (v)))

end for
else

u← order(v)
t← concat(v,u)
if G(v1, . . . vm) 6= G(t) then return
end if
S ← S ∪ {t}

end if
end function

Node(·)

Once the symmetries (if any) of the system have been found, the algorithm selects without
loss of generality one representative measurement for each equivalence class under such sym-
metries. For each representative measurement, the algorithm tests the signaling dimension
within the bounds provided in Lemma 1. This, along with the more effective way to com-
pute the symmetries, allows for a speedup with respect to the previously known algorithm of
Ref. [8].

The test itself proceeds as in Ref. [8], and we summarize it here for completeness. First,
the correlation matrix between the states of the systems and the measurement elements is
computed, producing a matrix pi,j := ωi · ej . Without loss of generality, the convex hull
conv({pi,·})i of the rows of such a matrix is considered; reducing the size of the correlation
matrix speeds up later steps of the algorithm. All the classical m-input/n-output correlation
matrices {Ak}k attainable by a d-dimensional classical systems and whose entries are null
wherever the corresponding entry of the correlation matrix are null are generated. As observed
in Ref. [8], this allows to compute the signaling dimension without the need for a simultaneous
enumeration of all the vertices of Pm→nd , which is in contrast, for instance, with the proposal
of Ref. [7]. To conclude the test, system S can be simulated by a classical d-dimensional
system if and only if the correlation matrix can be convex decomposed in terms of the Ak’s,
a fact that can be verified through linear programming. The algorithm is depicted in Fig. 1,
and an implementation in the Python programming language is provided as free software in
Ref. [21].

The problem complexity is dominated by the number of vertices of the polytope Pm→nd ,
that is, the number of extremal classical m-input/n-output correlation matrices {Ak}k attain-
able by a d-dimensional classical systems. Upon denoting with

(
n
k

)
the binomial coefficient

and with
{
m
k

}
the Stirling number of the second kind, one has [4] that the number V of
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start

States S

Effects E

Another representative of
ext.meas under symmetries?

pi,j = ωi · ej

d ←

{
2 if CS
3 otherwise

Can p be simulated by a
classical system of dimension d?

d ← d + 1

d <

{
aff.dim if CS
lin.dim otherwise

sig.dim(S) = max(d)

end

rational double description method

rational double description method

Yes

No

Yes No

Yes

No

Fig. 1. Flowchart representation of the algorithm for the exact computation of the signaling
dimension sig. dim(S) of any given set S of admissible states using Lemma 1.



Shuriku Kai and Michele Dall’Arno 941

vertices of Pm→nd is given by

V =

d∑
k=1

k!

(
n

k

){
m

k

}
.

Such a quantity grows exponentially in the number m of states and factorially in the number
n of effects; hence the problem quickly becomes practically unfeasible as either quantity
increases.

5 Applications

The algorithm has been applied to explore the signaling dimension landscape of GPTs whose
set S of admissible states is a rational polytope, that is, a polytope for which there exists a
basis in which the coordinates of each vertex are rational numbers (integers, up to a rescaling).
This is not a limitation of the algorithm per se, rather a limitation of the underlying linear
programming and double-description method subroutines, and has been introduced in order
to obtain exact results.

Specifically, the sets that have been considered include the rational Platonic solids (octahe-
dron, whose signaling dimension had already been computed by Frenkel [6], and cube, whose
signaling dimension is trivially two), the rational Archimedean solids (truncated tetrahedron,
cuboctahedron, and truncated octahedron), and the rational Catalan solids (triakis tetrahe-
dron, rhombic dodecahedron, and tetrakis hexahedron), all of which have affine dimension
equal to three (see Table 1).

S m aff.dim(S) CS |G| |M| |M′| sig.dim(S)
Octahedron 6 3 True 48 6 2 3

Cube 8 3 True 48 3 1 2
Truncated tetrahedron 12 3 False 24 6 3 3
Triakis tetrahedron 8 3 False 24 93 6 3
Cuboctahedron 12 3 True 48 41 6 3

Rhombic dodecahedron 14 3 True 48 20 3 2
Truncated octahedron 24 3 True 48 41 6 2
Tetrakis hexahedron 14 3 True 48 828 26 3

Table 1. Exact value of the signaling dimension for GPTs as a function of the state space S, for
all rational Platonic, Archimedean, and Catalan solids. The columns represent, from left to right:
the geometrical characterization of the state space S; the number m of extremal states; the affine
dimension aff. dim(S); whether S is centrally symmetric (CS) or not (see Lemma 1); the order |G|
of the symmetry group G of S and, under the no-restriction hypothesis, of E too; the number |M|
of extremal measurements; the number |M′| of equivalence classes of extremal measurements up
to symmetries; finally, the exact value of the signaling dimension of S.

One question that Table 1 helps addressing is: what systems are indistinguishable from the
classical bit and the qubit in terms of their signaling dimension? Notice that, as a consequence
of Corollary 1, the only two-dimensional systems systems indistinguishable from the classical
bit and the qubit in terms of their signaling dimension are those whose state space is centrally
symmetric. Table 1 shows that, among the three-dimensional systems considered, the only
ones indistinguishable from a classical bit and a qubit in terms of signaling dimension are the
cube, the rhombic dodecahedron, and the truncated octahedron.
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Other sets that have been considered include the hyper-octahedra in dimensions up to five
(see Table 2). Incidentally, it is perhaps worth noticing that, as a consequence of the fact
that any hyper-octahedral set of effects admits only two-outcomes extremal measurements,
the signaling dimension of any theory with hyper-cubical set S of states is bound to be two.

S m aff.dim(S) CS |G| |M| |M′| sig.dim(S)
Octahedron 6 3 True 48 6 2 3

Hyper-octahedron 8 4 True 384 48 3 3
Hyper-octahedron 10 5 True 3840 2712 9 3

Table 2. Exact value of the signaling dimension for GPTs as a function of the state space S, for
hyper-octahedra up to dimension five. The columns represent, from left to right: the geometrical
characterization of the state space S; the number m of extremal states; the affine dimension
aff. dim(S); whether S is centrally symmetric (CS) or not (see Lemma 1); the order |G| of the
symmetry group G of S and, under the no-restriction hypothesis, of E too; the number |M| of
extremal measurements; the number |M′| of representatives of equivalence classes of extremal
measurements up to symmetries; finally, the exact value of the signaling dimension of S.

Given that the signaling dimension of the two-dimensional octahedron (the square) is
two, and that of the three-dimensional octahedron is three, it might have been expected
the signaling dimension of the hyper-octahedron to grow with the affine dimension. This
expectation is motivated by the fact that the dual set, that is the hyper-cube, contains non-
trivial extremal measurements in any dimension (for instance, it is known [22] that the regular
simplex can be inscribed in the hyper-cube whenever Hadamard matrices exists, e.g. whenever
the linear dimension is a multiple of four up to 664). However, Table 2 disproves such an
expectation, at least up to dimension five.

Let us conclude by discussing the performance of our algorithm in comparison with pre-
vious proposals. For instance, for d = 3 the last row of Table 1 corresponds to m = 14 and
n = 24, while the last row of Table 2 corresponds to m = 10 and n = 32; as a comparison, for
the same value of the dimension d = 3, by using the algorithm proposed in Ref. [7], the Au-
thors thereof reached maximum values of m = 4 and n = 12. Our algorithm also outperforms
(by roughly a factor of four) the one proposed and implemented in Ref. [8] in the calculation
of the signaling dimension of the composition of two square systems.

6 Conclusion and outlook

In this work we explored the landscape of the signaling dimension of generalized probabilistic
theories. Our main result consists in deriving necessary conditions for the saturation of upper
and lower bounds on the signaling dimension. We discuss two applications of such conditions.
First, we show that such conditions suffice to completely characterize the signaling dimension
of any system whose affine dimension is two, thus proving that in that case the signaling
dimension is completely determined by whether or not the system is centrally symmetric.
Second, we show how such conditions can be used to improve upon previously known algo-
rithms for the exact computation of the signaling dimension of any given polytopic system,
and we apply such improved algorithms to compute the exact value of the signaling dimension
of certain classes of rational polytopes.

We conclude by discussing some open problems. It would of course be of the utmost
interest to derive a closed-form solution to the signaling dimension problem (an optimization
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problem) in terms of the geometrical properties of the set of admissible states in arbitrary
dimension, as we did for the two-dimensional case.

Another issue consists of the fact that, as explained in the previous section, for merely
technical reasons the implementation of our algorithm is restricted to rational polytopes.
This, for instance, excludes from our results certain Platonic solids (the icosahedron and
the dodecahedron), as well as certain Archimedean and Catalan solids. Generalizing the
implementation and computing the signaling dimension for such solids would shed further
light on the problem of characterizing those state spaces that are indistinguishable from the
classical bit and the qubit in terms of their signaling dimension.

Another interesting open question is whether the signaling dimension of regular hyper-
octahedra increases with the affine dimension of the system (and, if so, how). As justified in
the previous section, this question is particularly interesting in those (affine) dimensions in
which there exist Hadamard matrices, the smaller of which (after three) is seven. However,
the computational complexity of the problem, along with the fact that we are applying a
general-purpose algorithm not specialized to hyper-octahedra, restricted our analysis up to
dimension five; hence, the problem remains open.
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