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In this work, we explore the notions unextendible product basis and uncompletability for operators
which remain positive under partial transpose. Then, we analyze their connections to the ensembles
which are many-copy indistinguishable under local operations and classical communication (LOCC).
We show that the orthogonal complement of any bipartite pure entangled state is spanned by product
states which form a nonorthogonal unextendible product basis (nUPB) of maximum cardinality. This
subspace has one to one correspondence with the maximum dimensional subspace where there is no
orthonormal product basis. Due to these, the proof of indistinguishability of a class of ensembles under
LOCC in many-copy scenario becomes simpler. Furthermore, it is now clear that there are several
many-copy indistinguishable ensembles which are different construction-wise. But if we consider the
technique of proving their indistinguishability property under LOCC, then, for many of them it can
be done using the general notion of unextendible product basis. Explicit construction of the product
states, forming nUPBs is shown. Thereafter, we introduce the notion of positive partial transpose
uncompletability to unify different many-copy indistinguishable ensembles. We also report a class
of multipartite many-copy indistinguishable ensembles for which local indistinguishability property
increases with decreasing number of mixed states.
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More local indistinguishability with less mixed states

1 Introduction

A composite quantum system may exhibit nonlocal properties. Such properties are of central impor-
tance in quantum information theory since they make quantum systems fundamentally different from
their classical counterparts. Over the years, researchers have reported many nonlocal properties. One
such property is associated with the state discrimination problem under local operations and classical
communication (LOCC). In brief, it is called the local state discrimination problem (LSDP). In this
problem, a composite quantum system is prepared in a state which is secretly taken from a given set.
The task is to identify that state by LOCC.

For orthogonal states, it is always possible to identify the state of the system via a suitable global
measurement. But it is not always possible to identify the state of the system perfectly under the
setting of LSDP even if the given set only contains orthogonal states [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Here the problem arises from the fact that
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the parts of a composite system are distributed among spatially separated locations and the parties of
those locations are allowed to do LOCC only. When it is not possible to identify the state of the system
perfectly by LOCC, the given set is called a locally indistinguishable set, otherwise, the set is locally
distinguishable set. Clearly, if a given set of orthogonal quantum states is locally indistinguishable
then we say that the quantum system exhibit ‘nonlocality’ under the setting of LSDP. This nonlocality
is basically the difference between the global and local ability to identify the state of the system.
However, apart from examining nonlocal behaviour of a composite quantum system [1, 9, 19, 26, 27],
the setting of local state discrimination problem is also popular for its applications in data hiding
[28, 29, 30, 31, 32, 33], and secret sharing [34, 35, 36].

For a given locally indistinguishable set, if it is not possible to identify the state of the system
under LOCC, even though multiple (finite) identical copies of the states of that set are available, then
the given set is locally indistinguishable in many-copy scenario. Note that no adaptive local strategy
[27] is used here to examine local indistinguishability in many-copy scenario. However, if the given
set contains only orthogonal pure states then the set must be locally distinguishable when sufficient
identical copies of the states of the given set are available [3, 19]. Interestingly, it may not be the
case when at least one state of the set is a mixed state [19]. This constitutes a fundamental difference
between orthogonal pure and mixed states. This difference is described as ‘more nonlocality with less
purity’. Nevertheless, the sets, which are locally indistinguishable in many-copy scenario, are less
explored. There are only a few articles [19, 37, 38] where such sets are analyzed. Therefore, there
are several questions related to these sets which remained unsolved. In this work we revisit these sets
and address several unexplored aspects. In the following, we highlight those aspects demonstrating
the main motivations of this work.

Using the properties of unextendible product bases (UPBs), it was shown that there are sets of
orthogonal mixed states, which are locally indistinguishable in many-copy scenario [19]. Such a
set can be described as the following. Consider a bipartite unextendible product basis (UPB). Then,
consider a mixed state which is a normalized projection operator onto the subspace spanned by the
product states of the UPB. Along with this mixed state, consider any other state, picked from the
entangled subspace, corresponding to the UPB. Then, the set containing these two states is locally
indistinguishable in many-copy scenario. After the introduction of such sets, it was an open problem
if it is possible to construct such sets without using the notion of UPBs. Later, this question is dis-
cussed in [37, 38]. In these articles, the authors have shown the following without considering the
notion of UPBs. Consider any bipartite pure entangled state. Then, in its complementary subspace
consider a normalized projection operator such that the pure entangled state and the mixed state in
its complementary subspace are supported in the whole Hilbert space. Such an ensemble cannot be
perfectly distinguished in many-copy scenario by an operation which is stronger than LOCC. But in
these articles the authors have not considered the general notion of UPBs. They have only consid-
ered orthogonal UPBs (oUPBs). Clearly, the question remains if there is any connection of the sets
of [37, 38] with nonorthogonal UPBs (nUPBs). Furthermore, to prove that the sets of [37, 38] are
locally indistinguishable in many-copy scenario, the authors have used the notion of unextendibility
for operators with positive partial transpose (PPT). Here the question is if one can simplify the proof
techniques without using unextendibility for operators with PPT. The main motivation of exploring
these questions is to connect several concepts and bringing them together under the setting of LSDP.
Furthermore, with better understanding regarding these sets, it may possible to simplify the existing
theory. We further ask if it is possible to unify several sets, which are locally indistinguishable in
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many-copy scenario, by providing a single construction. We mention that given the limited advance-
ment of quantum technologies, unification of several structures is always important as it may provide
the opportunity to study several quantum properties using less resources. Then, we ask about con-
structing sets which are locally indistinguishable in many-copy scenario for multipartite systems and
we search for new quantum phenomenon if there is any. We mention that such multipartite sets are
not studied before.

For present type of sets, the notions – unextendibility, uncompletability play very important roles.
These notions were first introduced for product states [2, 8]. Later, the notion unextendibility has
been generalized for a few things, such as, entangled states [39], mutually unbiased bases [40], and
operators [38]. The notion unextendibility also has a few applications. For example, oUPBs are useful
to produce bound entangled states [2]. Furthermore, oUPBs exhibit nonlocality without entanglement
[2, 8, 41, 42]. In Ref. [8], connections of uncompletability and locally distinguishable or indistinguish-
able sets were explored. Recently, connections between unextendible entangled basis, uncompletable
entangled basis and locally indistinguishable sets have been explored in [43, 44]. However, there are
several questions related to these notions, the answers of which are not known yet. In fact, the notion
uncompletability is relatively less explored.

Next, we describe how the rest of this manuscript is arranged and along with this we also discuss
our main findings one by one. In Section 2, we discuss about some definitions along with the settings
of LSDP. Then, in the same section we also talk about corresponding assumptions. We want to analyze
the role of unextendibility and uncompletability properties to exhibit indistinguishability in many-
copy scenario. For this purpose, we first characterize the orthogonal complement of any bipartite
pure entangled state and we show that the orthogonal complement of any bipartite pure entangled
state is spanned by product states which form a nonorthogonal unextendible product basis (nUPB) of
maximum cardinality. This subspace has one to one correspondence with the maximum dimensional
subspace where there is no orthonormal product basis. These are discussed in Section 3. Due to these,
for several ensembles, proving local indistinguishability in many-copy scenario becomes simpler. This
is explained in Section 4. Moreover, the following is now clear. There are several ensembles which
are locally indistinguishable in many-copy scenario. Construction-wise they are different. But if we
consider the technique of proving their local indistinguishability property then, for many of them it
can be done using the general notion of UPB. In particular, there are several ensembles of [37, 38]
which have no connection with oUPBs but they are connected with nUPBs. Explicit constructions of
the product states, forming nUPBs of maximum cardinality are shown in Section 5. We also introduce
the notion of positive partial transpose uncompletability in Section 6 and examine its role to unify
different many-copy indistinguishable ensembles. Then, we report a phenomenon describing more
local indistinguishability with less mixed states. This can be found in a class of multipartite ensembles.
We mention that this study is a qualitative one because the particular instance that we have considered,
there quantitative study is not possible at the moment. The role of bound entanglement in this is also
analyzed. These are given in Section 7. Finally, in Section 8, the conclusion is drawn.

2 The task and corresponding assumptions

We start with a set of orthogonal quantum states. These states can be pure or mixed states. But only
perfect discrimination of these states under LOCC is considered. We also describe the given set as
an ‘ensemble’ and within an ensemble, the states are equally probable. The task of distinguishing the
states is called local state discrimination problem as we have mentioned it earlier. In other words,
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it is also called LOCC state discrimination problem. Therefore, it turns out that for a given set of
orthogonal states, if it is possible to identify the state of the system perfectly by LOCC, then that set
is locally distinguishable set, otherwise, that set is locally indistinguishable. In other words, we say
a locally distinguishable set as LOCC distinguishable set and locally indistinguishable set as LOCC
indistinguishable set. Corresponding states are called LOCC (or locally) distinguishable and indistin-
guishable states respectively. When a locally indistinguishable set remains locally indistinguishable
even if multiple (finite) identical copies of the states are available, we say that the set is LOCC (or
locally) indistinguishable in many-copy scenario. It actually means the following: Suppose, the con-
sidered locally indistinguishable set is {ρ1, ρ2, . . .}. In many-copy scenario, {ρ⊗n

1 , ρ⊗n
2 , . . .} is given, ‘n’

is an integer and it is finite. Clearly, the statement ‘{ρ1, ρ2, . . .} is locally indistinguishable in many-
copy scenario’ is equivalent to the statement ‘{ρ⊗n

1 , ρ⊗n
2 , . . .} is locally indistinguishable’.

3 Characterizing subspaces

Before we start discussing about the results, we mention that we first talk about bipartite systems.
Then, we talk about multipartite systems. We will clearly mention when we will start talking about
multipartite systems.

We now ask a couple of questions. However, the first question is related to unextendible product
basis (UPB). So, we begin with its definition.

Definition 1 [UPB] Suppose, a set of pure states is given. If these states are product and span a
proper subspace of the considered Hilbert space such that the complementary subspace contains no
product state then these product states form a UPB.

If the states within a UPB are pairwise orthogonal to each other then we say that the UPB is an
orthogonal UPB (oUPB) [2, 8]. Otherwise, it is a nonorthogonal UPB (nUPB) [45, 46, 47, 48, 49].
Note that in this paper if we mention only ‘UPB’ then we actually refer the above definition where
the product states may or may not be orthogonal. We assume that the considered system is associated
with the Hilbert space, H = Cd1 ⊗ Cd2 , d1, d2 are the dimensions of the local quantum systems. For
oUPB, d1, d2 ≥ 3 [2, 8], while for nUPB, there is no such bound. Now, a general question of any
bipartite UPB is:

Question 1 What is the maximum cardinality possible for a bipartite UPB?

Here the cardinality or size of a UPB is the number of product states, contained within the UPB.
Now if a UPB is an oUPB, then it cannot have cardinality greater than (d1d2 − 4) [50]. This is because
in the complementary subspace of an oUPB, there is bound entangled state(s) [2, 51, 52] which cannot
have rank less than four [53, 54]. For the existence of bipartite oUPBs of cardinality (d1d2 − 4), one
can have a look into Ref. [50]. However, for an nUPB, not necessarily the complementary subspace
contains a bound entangled state. Therefore, for a bipartite nUPB, the cardinality can be greater than
(d1d2−4). Here it is important to mention that a bound entangled state is a mixed entangled state from
which it is not possible to distill pure state entanglement with some non-zero probability via LOCC,
irrespective of how many copies of the state are given [55, 56].

We next move to the second question.

Question 2 What is the maximum dimension possible for a bipartite subspace which has no orthonor-
mal product basis?

In general, it is not necessary that a subspace, which has no orthonormal product basis (OPB),
must be spanned by the states of an nUPB. For example, there are entangled subspaces which neither
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have any OPB nor they have any nUPB spanning the subspace. It can also happen that a subspace has
an OPB, still the space is spanned by the states of an nUPB. However, when we talk about the exis-
tence of maximum cardinality of an nUPB or the existence of the maximum dimension of a subspace
which has no OPB, we see that they have one to one correspondence, i.e., Question 1 and Question 2
are connected with each other. In fact, for both questions the answer is (d1d2 − 1) and this connection
is through the orthogonal complement of any bipartite pure entangled state. Note that for both ques-
tions, the rest of the Hilbert space must be spanned by a pure entangled state which belongs to H =

Cd1 ⊗ Cd2 , otherwise, the solution might be trivial. More precisely, we want that the one-dimensional
subspace, complementary to the nUPB of maximum cardinality, i.e., complementary to the maximum
dimensional subspace with no OPB, must be spanned by a pure entangled state with local dimensions
d1 or d2.

We next provide the definition for the orthogonal complement of a bipartite pure state. This
definition is required to understand our results.
Definition 2 [Orthogonal complement of a pure state] Given a pure state |ψ〉 ∈ H , the orthogonal
complement of |ψ〉 is a proper subspace ofH on which the projection operator (I−|ψ〉〈ψ|) is supported,
I is the identity operator acting onH .

We are now ready to present the first proposition:
Proposition 1 The orthogonal complement of any bipartite pure entangled state is spanned by the
states of an nUPB of maximum cardinality. In fact, such a subspace, i.e., the orthogonal complement
of a pure entangled state, is the only example of maximum dimensional subspace with no OPB.
Proof: The proof for the first part of the proposition is due to its connection with a separability
criterion which states that if the purity of a bipartite mixed state is less than or equal to 1/(d1d2 − 1),
then it must be a separable state [57], where d1d2 is the total dimension of the given Hilbert space.
We next consider the state σ = [1/(d1d2 − 1)](I − |ψ〉〈ψ|), |ψ〉 is a pure entangled state. The trace of
σ2 is given by 1/(d1d2 − 1). Therefore, this state is a separable sate, according to the above criterion.
Now, the range of a separable state must be spanned by product states [55]. This implies that the
support of σ, i.e., the orthogonal complement of any pure entangled state |ψ〉 is also spanned by a set
of product states. These product states must form a UPB because the complementary subspace is an
one-dimensional entangled subspace, spanned by |ψ〉 itself. Clearly, the cardinality of such a UPB is
(d1d2 − 1). But oUPB cannot have this cardinality, as described before. Therefore, the product states,
spanning the orthogonal complement of any pure entangled state must form an nUPB. Obviously,
(d1d2 − 1) is the maximum cardinality of such an nUPB, otherwise, there is no unextendibility.

The proof for the second part of the proposition is quite straightforward. It is already established
that the subspace which is spanned by the states of an nUPB of maximum cardinality, cannot have
any OPB, otherwise, they form an oUPB. In this way, nUPB of maximum cardinality provides a
sufficient condition for a maximum dimensional subspace with no OPB. Now, notice that if the state
|ψ〉 is a product state then the complementary subspace is trivially spanned by a set of orthogonal
product states. Therefore, it is necessary that the maximum dimensional subspace with no OPB must
be spanned by the states of an nUPB of maximum cardinality. This completes the proof. �
Remark 1 The pure entangled state in the above proposition is an arbitrary state. Therefore, nUPB
of maximum cardinality or the maximum dimensional subspace with no OPB exists in all composite
Hilbert spaces.
Remark 2 When the Schmidt rank of the given entangled state |ψ〉 in the above proposition is strictly
greater than two, our subspace coincides with the subspace which does not contain any perfectly
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LOCC distinguishable basis [14, 58]. However, an important difference is that our subspace exists in
every Hilbert space while the subspaces of [14, 58] do not.

Here the ‘Schmidt rank’ of a pure entangled state can be defined as the minimum number of
product states which are required to express the entangled state. However, in support of Remark 2,
one may think about an example. For a two-qubit system, there is no subspace which does not contain
any perfectly LOCC distinguishable basis [14]. But the orthogonal complement of any two-qubit pure
entangled state is a subspace with no OPB and it is spanned by the states of an nUPB of cardinality
three.

We now proceed to show that Proposition 1 has connection with a class of local state discrimination
problems. In fact, due to this proposition, it is possible to provide a simplified theory in those state
discrimination problems.

4 Connection with a class of local state discrimination problems

We consider that the state |ψ〉 is any bipartite pure entangled state. We also consider an arbitrary
mixed state ρ of rank (d1d2 − 1) such that it is orthogonal to |ψ〉, where d1d2 is the total dimension
of the given bipartite Hilbert space. Using existing results, it is possible to prove that the ensemble,
E ≡ {|ψ〉, ρ} cannot be perfectly distinguished by LOCC in many-copy scenario. In particular, using
the results of [38], it is possible to prove that the states of E cannot be perfectly distinguished in many-
copy scenario by a measurement stronger than LOCC. Such a measurement can be defined through
positive operator valued measure (POVM) elements which remain positive under partial transpose
(PPT). Briefly, we say that the ensemble is indistinguishable under PPT-POVM in many-copy sce-
nario. Now, the measurements, which belong to the LOCC class, are necessarily PPT-POVMs but
there are PPT-POVMs which cannot be implemented by LOCC [37]. In this context, we mention
that proving (in)distinguishability of the states of any ensemble under LOCC is a difficult task to do.
This is a reason why researchers often consider a measurement like PPT-POVM. These measurements
have rich mathematical structure and thus, it is relatively easier to prove (in)distinguishability of the
states of an ensemble under PPT-POVM. Clearly, if the states of an ensemble are indistinguishable
under PPT-POVM then the states must be indistinguishable under LOCC as well. However, before we
proceed further, we provide the following in a definition environment.
Definition 3 [PPT-POVM] We consider a measurement on any bipartite Hilbert space. Suppose the
measurement is defined by a set of POVM elements such that all of these elements remain PPT. Then,
we simply say that such a measurement is a PPT-POVM.

Note that if we consider a measurement according to the above definition, then, this class of
measurements is much stronger than LOCC. One may also have a look into [59] for this class of mea-
surements. Now, we go back to the results of [38] again. To prove the local indistinguishability of the
states of an ensemble in many-copy scenario, the authors of [38] have proved the indistinguishability
of the states of the ensemble in many-copy scenario under PPT-POVM first. In fact, for this purpose,
they have used the notion of PPT unextendibility. Nevertheless, we argue here that for proving in-
distinguishability of the states of E under LOCC in many-copy scenario, it is neither required to use
the notion of PPT unextendibility nor one has to demonstrate explicitly that the states of E cannot be
perfectly distinguished by PPT-POVM in many-copy scenario. The proof of local indistinguishability
of the states of E in many-copy scenario can be done with the help of Proposition 1. So, we proceed
to prove the following:
Proposition 2 The states of E cannot be perfectly distinguished by LOCC in many-copy scenario.
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Proof: The state ρ of E is supported in a space spanned by the states of an nUPB. This is due to
Proposition 1. So, if we consider multiple copies of ρ, i.e., ρ⊗n, n is finite, then also this state is
supported in the space of nUPB. This is due to the fact that tensor product of two nUPBs is again an
nUPB [60]. The rest of the proof follows from the arguments given in [19]. These arguments can be
summarized as the following. Since the state ρ⊗n is always supported in a space spanned by the states
of some nUPB, the state |ψ〉〈ψ|⊗n is always supported in an entangled subspace. So, we cannot get
a product state which has nonzero overlap with |ψ〉〈ψ|⊗n and orthogonal to ρ⊗n. Again, finding such
a product state is necessary to distinguish the states ρ⊗n and |ψ〉〈ψ|⊗n unambiguously under LOCC
with at least some nonzero probability [61, 62]. Clearly, unambiguous discrimination of these states
is not possible under LOCC with non-zero probability. This implies perfect discrimination of these
states is also not possible. In this way, the states of E cannot be perfectly distinguished by LOCC in
many-copy scenario. �

Now, regarding the above proof technique, we have the following remark:

Remark 3 The proof technique for local indistinguishability of E in many-copy scenario, becomes
much simpler and this simplicity is due to the finding, given in Proposition 1.

Apart from the above simplification, the proof technique of Proposition 2 has another importance.
This is described as the following. After the introduction of orthogonal quantum states which are
locally indistinguishable in many-copy scenario, in Ref. [19], it was an open problem how to construct
such states without invoking the concept of UPB. This question was addressed later in [38]. There,
the authors claimed that their ensembles are constructed without using the concept of UPB. However,
there the authors only considered the notion of oUPB. Interestingly, our discussions show that several
ensembles of [38] are connected to nUPB. Therefore, it is still an open problem how to construct such
states without invoking the general notion of a UPB. We will come back to this discussion again in a
later portion of the paper.

Notice that Proposition 1 only talks about the existence of nUPB of maximum cardinality. In
spite of this proof for the existence of an nUPB in the orthogonal complement of any bipartite pure
entangled state, the question remains: How to construct such product states starting from an arbitrary
bipartite pure entangled state. In the following, we provide a general procedure for constructing
the product states, starting from any bipartite pure entangled state. This construction technique is
important as it provides the nUPBs of maximum cardinality.

5 Constructions of nonorthogonal Unextendible Product Bases

It is known that any bipartite pure entangled state |ψ〉 ∈ H = Cd1 ⊗ Cd2 , can be written in the Schmidt
form, i.e., |ψ〉 =

∑
i ai |i〉 |i′〉, where i = 1, . . . , r, 2 ≤ r ≤ min{d1, d2}, r is known as Schmidt rank, ai are

positive numbers such that
∑

i a2
i = 1, ai are called Schmidt coefficients, {|i〉} are orthonormal vectors

for the first subsystem, and {|i′〉} are orthonormal vectors for the second subsystem. For example, if
r = 2, then i = 1, 2 and the state |ψ〉 becomes a1 |1〉 |1′〉 + a2 |2〉 |2′〉.

Starting from an arbitrary pure entangled state, we show how to construct a set of linearly inde-
pendent product states which span the orthogonal complement of the given entangled state. Clearly,
all these product states must be orthogonal to the given entangled state.

We suppose that the Hilbert space is H = C2 ⊗ C2 and r = 2. So, an arbitrary entangled state is
given by- |ψ〉 = a1 |1〉 |1′〉 + a2 |2〉 |2′〉. The orthogonal complement of this state is spanned by three
states {a2 |1〉 |1′〉 − a1 |2〉 |2′〉, |1〉 |2′〉, |2〉 |1′〉}. This space is also spanned by three linearly independent
states {(a2 |1〉 |1′〉+ a2 |1〉 |2′〉 − a1 |2〉 |1′〉 − a1 |2〉 |2′〉)/

√
2, |1〉 |2′〉, |2〉 |1′〉}. In this set, the first product
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state can be written as (a2 |1〉 − a1 |2〉)(|1′〉+ |2′〉)/
√

2. It is easy to check that if we pick any two states
among these three product states then either the two states are orthogonal to each other or they can be
written as {|Φ〉 , a |Φ〉 + a′ |Φ′〉}, 〈Φ|Φ′〉 = 0. Therefore, the three product states are pairwise linearly
independent. Furthermore, all of them are orthogonal to the given entangled state, |ψ〉. If the Hilbert
space dimension is higher but r is still 2, i.e., the state is supported in a smaller dimensional subspace
then easily, we can consider some other orthogonal product states along with the above three product
states for spanning the whole orthogonal complement of the given entangled state.

Now, we suppose that the Hilbert space isH = C3⊗C3 and r = 3. So, an arbitrary entangled state is
given by- |ψ〉 = a1 |1〉 |1′〉+a2 |2〉 |2′〉+a3 |3〉 |3′〉. In this case we consider two subspaces, one is spanned
by- {(1/N1)(a2 |1〉 |1′〉 − a1 |2〉 |2′〉), |1〉 |2′〉, |2〉 |1′〉} and the other is spanned by- {(1/N2)(a3 |1〉 |1′〉 −
a1 |3〉 |3′〉), |1〉 |3′〉, |3〉 |1′〉}, N1, N2 are the factors for proper normalization. The first subspace can be
spanned by three linearly independent product states, following the r = 2 case. Again, by the similar
procedure, for the second subspace also we can construct three linearly independent product states
{(1/N2)(a3 |1〉 − a1 |3〉)(|1′〉 + |3′〉)/

√
2, |1〉 |3′〉, |3〉 |1′〉}. So, we now have a set of six linearly indepen-

dent product states, together they are given by- {(1/N1)(a2 |1〉 − a1 |2〉)(|1′〉 + |2′〉)/
√

2, |1〉 |2′〉, |2〉 |1′〉,
(1/N2)(a3 |1〉 − a1 |3〉)(|1′〉 + |3′〉)/

√
2, |1〉 |3′〉, |3〉 |1′〉}. But for the entangled state that we have con-

sidered, the orthogonal complement is an eight dimensional subspace. So, we need two more product
states which are given by- {|2〉 |3′〉, |3〉 |2′〉}. In this way we can construct linearly independent product
states which span the orthogonal complement of the state |ψ〉 = a1 |1〉 |1′〉+a2 |2〉 |2′〉+a3 |3〉 |3′〉. If the
Hilbert space dimension is higher but r is still 3, i.e., the state is supported in a smaller dimensional
subspace then quite easily we can consider some other orthogonal product states along with the above
eight product states for spanning the whole orthogonal complement of the given entangled state.

Following similar process, one can easily construct such product states which span the orthogo-
nal complement of a bipartite entangled state with an arbitrary value of r. For any H = Cd1 ⊗ Cd2

and an arbitrary r(≥ 3), the key is to consider separate three-dimensional subspaces spanned by the
states {(1/N(i−1))(ai |1〉 |1′〉 − a1 |i〉 |i′〉), |1〉 |i′〉, |i〉 |1′〉} which is also spanned by the product states
{(1/N(i−1))(ai |1〉 − a1 |i〉)(|1′〉+ |i′〉)/

√
2, |1〉 |i′〉, |i〉 |1′〉}, for different values of i = 2, 3, . . . , r, N(i−1) are

appropriate factors for proper normalizations. For a fixed value of r, we can construct 3(r − 1) such
product states and with these we can add some orthogonal product states (total r2 − 3r + 2 product
states) |i1〉 |i′2〉, i1 , i2 , 1, i1, i2 = 2, 3, . . . , r. To complete the set, the rest of the product states are
given by- {| j1〉 | j′2〉} \ {|i1〉 |i

′
2〉}, where j1 = 1, 2, . . . d1, j2 = 1, 2, . . . d2, and i1, i2 = 1, 2, . . . , r.

These constructions are also important because following these constructions, it is possible to
construct nUPBs, having cardinality < (d1d2 − 1). We now provide an interesting example of that
kind.

We consider H = C2 ⊗ C3. Then, we consider the construction of the subspace which contain
only state with non-positive partial transpose (NPT) [63]. Briefly, we say that such a subspace is an
NPT subspace. We consider the span of two entangled states, |1〉 |2〉 − |2〉 |1〉 and |1〉 |3〉 − |2〉 |2〉. For
simplicity, we avoid the factors for normalization. Now, this span of two entangled states produces an
NPT subspace while the complementary subspace is spanned by the states {|1〉 |2〉 + |2〉 |1〉, |1〉 |3〉 +

|2〉 |2〉, |1〉 |1〉, |2〉 |3〉}. We take combinations of these four states and construct linearly independent
product states. These product states are {(|1〉 + |2〉)(|1〉 + |2〉 + |3〉), (|1〉 − |2〉)(|1〉 − |2〉 + |3〉), |1〉 |1〉,
|2〉 |3〉} (without the factors for normalization). It is easy to check that these product states are linearly
independent and these product states are orthogonal to the entangled states of the considered NPT
subspace. In this way, we find an nUPB of cardinality (d1d2 − 2), where d1 = 2 and d2 = 3. This
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construction is particularly important because there is no oUPB inH = C2 ⊗ Cd, d ≥ 2 [8].
We next consider any mixed state of rank-4 which is supported on the subspace spanned by the

states of nUPB, just constructed. Then, this mixed state along with any orthogonal state(s) from the
NPT subspace form an ensemble, the states of which cannot be perfectly distinguished by LOCC in
many-copy scenario. The proof of this follows the same way as given for Proposition 2.

Using oUPBs, it is possible to construct ensembles which cannot be perfectly distinguished by
LOCC in many-copy scenario [19]. On the other hand, one can consider the ensembles of [38, 37],
they are also locally indistinguishable in many-copy scenario. Interestingly, many of them are con-
nected with nUPBs. This is due to the proof of Proposition 2. We have already discussed about this
before starting this section. Thus, we have the following remark:

Remark 4 There are several ensembles which are locally indistinguishable in many-copy scenario.
Construction-wise they are different. But if we consider the technique of proving their local indistin-
guishability property then, for many of them it can be done using the general notion of UPB.

However, the ensembles of [19] are perfectly distinguishable by PPT-POVM, one can have a look
into [59]. On the other hand, if we consider the ensembles of [37, 38], the states are indistinguishable
under PPT-POVM. Therefore, we ask the following. We want to construct a single UPB (say, UPB
with common property or cUPB), starting from which we further want to construct several ensembles,
the states of which cannot be perfectly distinguished by LOCC in many-copy scenario. But it must be
the case that for some ensembles the states are perfectly PPT-POVM distinguishable while for other
ensembles, it is not. For this purpose, we introduce the concept ‘PPT uncompletability’.

6 PPT uncompletability

PPT uncompletability is a property which can be exhibited by a PPT uncompletable subspace. PPT
uncompletability is a natural generalization of uncompletability of product states [8]. Consider a set
of orthogonal product states. These product states span a proper subspace of the considered Hilbert
space. Now we suppose that there are product state(s) orthogonal to the given product states but
it is not possible to extend the set of given states to a complete orthogonal product basis. Then,
the given product states exhibit uncompletability. Such product states have connection with local
indistinguishability property. For a detailed discussion, one can have a look into [8]. Next, we start
with the following definition for positive operators which remain positive under partial transpose, i.e.,
the PPT operators.

Definition 4 [PPT uncompletable subspace] LetS be a proper subspace of the bipartite Hilbert space
H such that it contains at least one PPT operator, supported on the entire subspace. Again, we
consider that the complementary subspace S⊥ has PPT operator(s) but none of these operators is
supported on the entire S⊥. If this is the case then we say that the subspace S is a PPT uncompletable
subspace.

If the PPT operator(s) of S⊥ are supported in S′, a proper subspace of S⊥, then S ⊕ S′ is a PPT
unextendible subspace [38]. Recall that the type of UPB, we just talked about, for that UPB (in partic-
ular, cUPB), PPT uncompletability is a desired property. This is because PPT completability may lead
to perfect discrimination by PPT POVM. Because of PPT completeness, it may possible to find PPT
operators, summing which one may get identity operator. Thus, these operators may constitute a valid
PPT POVM which can distinguish some ensembles. On the other hand, PPT unextendibility leads to
indistinguishability by PPT POVM. Clearly, PPT uncompletability lies in between PPT completability
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and PPT unextendibility. We now provide a construction of such a subspace and the cUPB. In fact,
this construction is an application of nUPB of maximum cardinality.

We consider H = C5 ⊗ C5. We further consider four subspaces S 1, S 2, S 3, and S 4, such that
S 1 ⊕ S 2 ⊕ S 3 ⊕ S 4 = C5 ⊗C5. We now define the subspaces in the following way: S 1 = {|1〉 , |2〉 , |3〉} ⊗
{|1〉 , |2〉 , |3〉}, S 2 = {|4〉 , |5〉}⊗{|1〉 , |2〉 , |3〉}, S 3 = {|1〉 , |2〉 , |3〉}⊗{|4〉 , |5〉}, and S 4 = {|4〉 , |5〉}⊗{|4〉 , |5〉},
where S i = {| j〉} ⊗ {|k〉} means the subspace S i is spanned by the states {| j〉 |k〉}. We next consider an
oUPB in S 1. The states of this oUPB is given by- {|1〉 (|1〉−|2〉), (|1〉−|2〉) |3〉, |3〉 (|2〉−|3〉), (|2〉−|3〉) |1〉,
(|1〉 + |2〉 + |3〉)(|1〉 + |2〉 + |3〉)}. This oUPB can be found in [2]. For simplicity, we avoid the factors
for normalization here. Again, we consider an nUPB of maximum cardinality in S 4, defined by-
{(|4〉 + |5〉)(|4〉 + |5〉), |4〉 |5〉, |5〉 |4〉}. We now consider the following product states together: the
product states of oUPB of S 1, the product states {|4〉 |1〉, |4〉 |2〉, |4〉 |3〉, |5〉 |1〉, |5〉 |2〉, |5〉 |3〉} forming
an OPB for S 2, the product states {|1〉 |4〉, |2〉 |4〉, |3〉 |4〉, |1〉 |5〉, |2〉 |5〉, |3〉 |5〉} forming an OPB for S 3,
and the product states forming the nUPB of S 4 and we say these product states as the set S (see Fig. 1).
We next prove the following:

Proposition 3 The product states of S form an nUPB of cardinality twenty in C5 ⊗ C5, i.e., the com-
plementary subspace of this nUPB is a five-dimensional entangled subspace. Furthermore, this nUPB
constitutes an example of PPT uncompletable subspace.

Proof: The five-dimensional complementary subspace is formed due to the four-dimensional entan-
gled subspace, complementary to the oUPB of S 1 and one dimensional entangled subspace, com-
plementary to the nUPB of S 4. This one dimensional entangled subspace of S 4 is spanned by
|4〉 |4〉 − |5〉 |5〉. Any state which belong to any of these entangled subspaces must be entangled. So,
we consider only those states which are supported in both entangled subspace. For these states, Alice
or Bob can get pure state entanglement with some nonzero probability performing a simple projective
measurement: {P1 = |1〉〈1|+ |2〉〈2|+ |3〉〈3|, P2 = |4〉〈4|+ |5〉〈5|; P1 +P2 = I5}, where I5 is an identity op-
erator acting on C5. In particular, if the measurement outcome is ‘2’, then a state will be projected on
|4〉 |4〉 − |5〉 |5〉. Thus, all such states are entangled and the five-dimensional complementary subspace
is an entangled subspace.

Following the above arguments, it is possible to explain the construction of a PPT uncompletable
subspace. The five dimensional entangled subspace, mentioned above, does not have any rank-5
operator which is PPT. Because from all such operators, it is possible to get pure state entanglement,
notice the consequence of outcome ‘2’ in the above paragraph. Now, there is a rank-4 PPT operator
in this subspace which is due to the oUPB of S 1 [2]. Next, using the states of nUPB of size twenty,
it is possible to construct a PPT state supported on the entire nUPB space by taking any convex
combination of the product states of nUPB. Therefore, this nUPB space has at least one PPT operator
supported on the entire subspace. On the other hand, the complementary subspace contains a PPT
operator but there is no PPT operator which is supported on the entire complementary subspace. So,
by Definition 4, this nUPB space is an example of PPT uncompletable subspace. �

The above nUPB is the desired cUPB (UPB with common property). Thus, we also prove the
following:

Proposition 4 The product states of S lead to a single UPB, from which both types of many-copy
indistinguishable ensembles can be constructed; one is perfectly distinguishable by PPT-POVM while
the other cannot be.

Note: In this proposition, when we consider (in)distinguishability of these ensembles under PPT-
POVM, we examine this at a single copy level.
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Fig. 1. Tile structure for S: the green, blue, orange, and the purple colors represent S 1, S 2, S 3, and S 4 respectively.
In S 1 there is a tile structure corresponding to the well-known Tiles UPB [2]. In S 2 and in S 3 each tile corresponds
to a product state. But in S 4 the product states are nonorthogonal. So, there is no tile in this region. Note that ‘A’
stands for Alice’s side and ‘B’ stands for Bob’s side.

Proof: We consider any state ρ1 of rank-20 supported on the nUPB space of size twenty. Then, we
consider ρ2 which is the rank four PPT entangled state, supported in the complementary subspace of
the above nUPB. We also consider ρ3 which is the projector on the state |4〉 |4〉 − |5〉 |5〉. Following the
proof of Proposition 2, it is easy to see that the states of both ensembles {ρ1, ρ2}, {ρ1, ρ3} cannot be
perfectly distinguished by LOCC in many-copy scenario.

But the states of the ensemble {ρ1, ρ2} can be perfectly distinguished by PPT-POVM. Correspond-
ing measurement is given by {P′, I25 − P′}, where P′ is the projection operator onto the support of ρ2

and I25 is the identity operator acting on C5 ⊗ C5 (see also [59] in this regard). Notice that the space
on which the operator I25 − P′ is supported, is spanned by the states of an oUPB. This oUPB can be
found by considering the oUPB of S 1 together with any OPBs of S 2, S 3, and S 4. Clearly, I25−P′ must
be a PPT operator. Again, P′ is the projection operator corresponding to the bound entangled state
which is produced due to the oUPB of S 1. Thus, P′ is also a PPT operator. In this way, {P′, I25 − P′}
constitutes a PPT-POVM.

Furthermore, the states of the ensemble {ρ1, ρ3} cannot be perfectly distinguished by PPT-POVM.
Because for this perfect discrimination, we need a PPT operator orthogonal to ρ1 but nonorthogonal
to ρ3. Such an operator must be partially supported on the space spanned by |4〉 |4〉 − |5〉 |5〉. However,
we have proved that such an operator does not exist. �

As described before, both {ρ1, ρ2}, {ρ1, ρ3} cannot be perfectly distinguished by LOCC in many-
copy scenario but they have different properties when PPT-POVM is concerned. Thus, we can have
the following remark.

Remark 5 The notion of PPT uncompletability is helping to unify different indistinguishability prop-
erty through a single construction of a UPB, in particular, the cUPB.

7 More local indistinguishability with less mixed states

Here we discuss about the results for multipartite quantum systems. Given an ensemble of multipartite
orthogonal quantum states, for local indistinguishability of the ensemble, it is not necessary that the
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ensemble must be locally indistinguishable across at least one bipartition. For example, one can
consider the following: any set of orthogonal product states in three-qubit Hilbert space, is perfectly
locally distinguishable in bipartitions, however, such a set might be locally indistinguishable when all
qubits are spatially separated [2, 8, 26, 64]. On the other hand, if any multipartite ensemble is locally
indistinguishable across at least one bipartition then it must be so when all subsystems are spatially
separated. Therefore, one can say the following:
Remark 6 Local indistinguishability across bipartitions is a stronger property compared to local
indistinguishability when all subsystems are spatially separated.

We now want to talk about a class of many-copy indistinguishable multipartite ensembles which
are defined as the following: there are only two elements in those ensembles, i.e., {σ1, σ2}, such that
they are orthogonal to each other and the sum of the dimensions of the supports, corresponding to
the states σ1 and σ2, is equal to the total dimension of the considered Hilbert space. In fact, here
σ1 is a separable state while σ2 is an entangled state. For these ensembles, we present the following
proposition:
Proposition 5 If σ2 is a pure state, then, the ensemble must be locally indistinguishable in many-copy
scenario across at least one bipartition.
Proof: A pure multipartite entangled state is entangled in at least one bipartition. We start with that
bipartition and one of the states in the ensemble becomes a pure bipartite entangled state while the
other state of the ensemble is supported in the entire orthogonal complement of that pure state. The
rest of the proof is due to Proposition 1 and Proposition 2. �

So, in the above, we see that pure state entanglement guarantees local indistinguishability in many-
copy scenario in at least one bipartition for the present class of states. Now we prove the following:
Proposition 6 If σ2 is a mixed state, then, the ensemble may not be locally indistinguishable in many-
copy scenario across bipartitions.
Proof: To prove this proposition, any example, where the ensemble is perfectly locally distinguish-
able across bipartitions but it is locally indistinguishable in many-copy scenario when all subsystems
are spatially separated, is sufficient, provided σ2 is a mixed state. Such examples are given as the
following.

We consider any three-qubit oUPB. We then consider any mixed separable state supported in
the entire subspace spanned by the states of the oUPB. We say this state as σ1. Then, we consider
another state, the bound entangled state, corresponding to the oUPB. We say this state as σ2. Now,
the ensemble {σ1, σ2} is locally indistinguishable in many-copy scenario when all qubits are spatially
separated. The proof corresponding to this follows from the construction of [19]. Nevertheless, it
is important to mention that though the results of [19] are for bipartite systems, they can be easily
extended to multipartite systems, following the fact that if we take tensor product of multipartite
oUPBs, then after the tensor product, another multipartite oUPB is produced [8]. So, here what we
are considering is the following. σ1 is supported on the entire oUPB space. Now, if we take σ⊗n

1 ,
then it is also supported on some oUPB space, due to [8]. Therefore, σ⊗n

2 is always supported in an
entangled subspace. Thus, the ensemble {σ⊗n

1 , σ⊗n
2 } is locally indistinguishable [19]. We next proceed

to prove that the ensemble {σ1, σ2} are perfectly distinguishable across bipartitions.
It is known that the bound entangled state, σ2 is separable across every bipartition [2]. Since, we

are starting with any three-qubit oUPB, it is difficult to give an explicit form. But the above can be
understood as the following. If we consider the oUPB, due to which the bound entangled entangled
state is produced, then it can extended to a complete orthogonal product basis across bipartitions.
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Therefore, this bound entangled state can be written as a convex combination of orthogonal product
states across every bipartition. However, these product states are not fully product states. Thereafter,
in any bipartition, we consider the orthogonal product states together, which span the supports of the
mixed states σ1 and σ2. These pure states can be chosen in such a way that they form a complete OPB
(cOPB) in C2 ⊗C4. If one changes the bipartition, the cOPB also changes. These cOPBs are perfectly
distinguishable by LOCC [2]. In this way, the ensemble {σ1, σ2} is perfectly locally distinguishable
across every bipartition. These complete the proof of the proposition. �

These sets are strange sets: when all qubits are spatially separated, the ensemble is quite indistin-
guishable under LOCC as they remain indistinguishable in many-copy scenario. Nonetheless, when
considered in the bipartitions with only one copy of each state is given, the set is perfectly locally
distinguishable, i.e., the local indistinguishability property completely vanishes. Therefore, the local
indistinguishability property here is fragile with respect to bipartitioning. This observation is com-
pletely new and therefore, the above proposition is quite important.

Recall that any set of three-qubit orthogonal product states is perfectly locally distinguishable
across bipartitions. However, the situation becomes complex, when there are mixed states. But for
distinguishability of the present ensembles across bipartitions, the bound entangled state is playing a
key role as it is separable across every bipartition. We like to analyze this to a further extend in a later
portion of this paper.

In light of Proposition 5 and Proposition 6, when we analyze these ensembles, we see that the local
indistinguishability property of them may increase with decreasing number of mixed states in those
ensembles. This is in the following sense. A stronger form of local indistinguishability (see Remark 6)
can be guaranteed when a state of the present ensembles is a pure state, i.e., local indistinguishability
across at least one bipartition in many-copy scenario can be guaranteed. But this property may not be
found when both states are mixed states.

This is not usual as ‘more mixed states’ in an ensemble usually provides ‘less distinguishabil-
ity’ of the ensemble under LOCC. There are reasons to believe it. For example, any two orthogonal
pure states can always be perfectly distinguished by LOCC [3]. However, there are ensembles of two
orthogonal mixed states which cannot be perfectly distinguished by LOCC [43]. Again, any set of
orthogonal pure states can always be perfectly distinguished by LOCC if sufficient (finite) identical
copies of the states are available [3, 19]. But there are orthogonal mixed states which cannot be per-
fectly distinguished by LOCC in many-copy scenario [19, 58, 38]. From these results, one may expect
that if the number of mixed states increases in an ensemble then the local indistinguishability property
of the set is also increased. However, in the present class of ensembles, we see that a stronger demon-
stration of local indistinguishability can only be guaranteed if one of the states within the ensemble is
a pure state. On the other hand, this notion may not be found if both states are mixed states. Clearly,
with decreasing number of mixed states in the present class of ensembles, one may get more local
indistinguishability property. We say this phenomenon as more local indistinguishability with less
mixed states.

We mention that our analysis is a qualitative analysis. In fact, this analysis is complementary to the
previous qualitative result ‘more nonlocality with less purity’ [19]. We also mention that the property
we are discussing about here, i.e., the stronger demonstration of local indistinguishability property
within the present class of ensembles, can only be guaranteed when one of the states in present en-
sembles is a pure state. In fact, this particular demonstration of local indistinguishability property has
nothing to do with the quantitative measure of mixedness within the states of the ensemble but with
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the quality of a mixed state. To explore this further, we analyze the role of bound entanglement in
exhibiting ‘more local indistinguishability with less mixed states’. This can be realized through the
following remark.
Remark 7 Bound entanglement via positivity under partial transpose may not be desired to exhibit
more local indistinguishability in these ensembles.

We start by providing a proposition.
Proposition 7 To distinguish any ensemble {σ1, σ2} of the present kind across all bipartitions by
LOCC, it is necessary that the projection operators corresponding to σ1 and σ2 are positive under
partial transpose in bipartitions.

Note: When we say ‘ensemble of present kind’, we actually refer to the description given just before
Proposition 5.
Proof: To distinguish any ensemble {σ1, σ2} perfectly by LOCC, it is necessary that the ensemble is
perfectly distinguishable by PPT-POVM. For this, we need two projection operators π1 and π2, such
that Tr(σiπ j) = δi j; π1+π2 = I, here I is the identity operator, acting on the Hilbert space corresponding
to σ1 and σ2. We note that πi must be PPT in bipartitions here ∀i = 1, 2.

We now assume that a projector is non-positive under partial transpose (NPT). For this, it is neces-
sary that there exist at least one bipartition in which the projector is NPT. In this way, in that bipartition
the ensemble {σ1, σ2} is not perfectly distinguishable by PPT-POVM and thereby LOCC. �

From the above one thing is clear: to distinguish present sets in bipartitions, it is necessary that σ2

has bound entanglement via positive partial transpose particularly when it is a normalized projection
operator. Therefore, one can conclude from here that bound entanglement may not be desired to
exhibit more local indistinguishability in those cases. This is in the following sense. If the normalized
projector corresponding to σ2 has bound entanglement then there is a possibility that the ensemble
is perfectly locally distinguishable across every bipartition, in this context, recall the examples of
three-qubit system, discussed earlier.

8 Conclusion and open problems

Apart from exploring the notions – unextendibility for product states and uncompletability for PPT
operators, here we have discussed several topics which were not addressed before in the literature.
These topics cover connection of nonorthogonal UPB with several many-copy indistinguishable en-
sembles, unifying several many-copy indistinguishable ensembles, role of PPT uncompletability in
this unification, exhibiting new phenomenon via many-copy indistinguishable ensembles in multipar-
tite systems and role of bound entanglement in it. In particular, we have shown that the orthogonal
complement of any bipartite pure entangled state is spanned by product states which form an nUPB of
maximum cardinality. This subspace has one to one correspondence with the maximum dimensional
subspace where there is no OPB. Due to this, for several ensembles, proving local indistinguishability
in many-copy scenario has become simpler. Explicit construction of the product states, forming the
nUPBs of maximum cardinality, has been shown. In fact, the following is now clear. There are several
many-copy indistinguishable ensembles under LOCC. Construction-wise they are different. But if we
consider the technique of proving their local indistinguishability property then, for many of them it can
be done using the general notion of UPB. Then, we have introduced the notion of PPT uncompletabil-
ity and via this notion we have unified different many-copy indistinguishable ensembles. Finally, we
have discussed about a class of many-copy indistinguishable multipartite ensembles for which local
indistinguishability property increases with decreasing number of mixed states in the ensemble.
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For further research, it will be interesting to identify the ensembles which are not connected to the
general notion of UPB, but still the states of such an ensemble are locally indistinguishable in many-
copy scenario. It will also be interesting to explore more about the new notion PPT uncompletability
and the phenomenon increasing local indistinguishability with decreasing number of mixed states in
an ensemble.
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