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We introduce eigen-independency of certain unitary matrices of degree 2. We show
that this property characterizes stationary measures of quantum walks on cycles with

odd number of vertices. We also characterize the stationary measures of the two-state

Hadamard walk (both moving-shift and flip-flop shit) on cycles with p vertices, where p
is an odd prime number.
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1 Introduction

The quantum walk (QW) has attracted much attention as a quantum counterpart of the

classical random walk (RW) since around 2000. There are two types of the QWs. One is the

discrete-time walk and the other is the continuous-time one. From now on, we consider the

discrete-time case. In particular, the QW on Z has been studied intensively and extensively,

where Z is the set of integers. Then, QWs have some non-classical properties, i.e., ballistic

spreading, anti-bellshaped limit density, and localization. The reviews and books on QWs

are Konno [13], Manouchehri and Wang [21], Portugal [22], Venegas-Andraca [24], Godsil and

Zhan [7], for examples.

One of the important problems in RW research is to find stationary measures, and the

same is true for QW, for which several results have already been obtained. Especially, many

results are known in the study of QWs on Z as we will mention below.

Concerning the space-homogeneous case, Konno [14] showed that the uniform measure

is a stationary measure for the two-state QWs and the three-state Grover walk on Z. This

holds for the general N -state Grover walk also. After his work, stationary measures of two-

state space-homogeneous QWs on Z were obtained in Konno and Takei [17], Komatsu and

Konno [12]. Moreover, Kawai et al. [9] obtained stationary measures of three-state space-

homogeneous QWs including the Grover and Fourier walks on Z. In addition, as for the

stationary measures of space-homogeneous Grover walks on Zd, see Komatsu and Konno [11],

Konno and Takahashi [18].

Furthermore, concerning the space-inhomogeneous case, Konno et al. [16] got a stationary
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1146 Stationary measures of QW on cycles

measure for the two-state QW on Z with one defect at the origin. After their work, the

stationary measure of the two-state space-inhomogeneous QW on Z has been investigated in

[1, 4, 5, 6, 10]. As for the stationary measures of three-state space-inhomogeneous QWs on Z
with one defect, see Wang et al. [25], Endo et al. [2], [3].

On the other hand, known results on stationary measures in the case of cycles with N

vertices are limited. Indeed, stationary measures of three-state space-homogeneous Fourier

walks on cycles with N = 3n (n = 1, 2, . . .) were obtained in Kawai et al. [9].

Under this background, we consider stationary measures of two-state QW on cycles with

N vertices, where N is an odd number. Remark that it is known and easily verified that any

stationary measure of two-state QW including the Hadamard walk on the cycle with N = 2

vertices is the uniform measure, see Konno [15], for instance.

In this paper, we introduce eigen-independency of certain unitary transforms (Definition

3), which characterizes stationary measures of the QW with such transforms as coin (Theorem

5). We also characterize stationary mesures of the two-state Hadamard walks (moving shift

and flip-flop shift) in the case of cycles with p vertices, where p is an odd prime number.

Finally we state two conjectures on eigen-independency and stationary measures of two-state

Hadamard walks (Conjectures 14, 15).

The organization of this paper is as follows. In Section 2, we introduce eigen-independency

of certain unitary transforms, and state results related to this notion. We prove them in

Section 4. Before the proof, we explain some basic facts in Section 3. Finally, we study the

two-state Hadamard walks in Section 5.
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2 Results

We first explain a general setup. Let G be a cyclic group of order N generated by σ, and V

a 2-dimentional vector space over C with inner product 〈, 〉. Let us denote by |v| =
√
〈v, v〉

the norm of v. Set

X = V [G] = V ⊗C C[G] =
⊕
τ∈G

V ⊗ τ

and denote an element of X by x =
∑
xτ ⊗ τ . We often write xτ ∈ V for such an x ∈ X. We

identify x ∈ X with (xτ )τ∈G ∈ (C2)|G|.

Let G∗ be the character group Hom(G,C∗) of G, and set

Y = V [G∗] = V ⊗C C[G∗] =
⊕
χ∈G∗

V ⊗ χ.

Then we have a linear isomorphism ι : X → Y with ι(v ⊗ τ) =
∑
χ∈G∗ vχ(τ)⊗ χ for (v, τ) ∈

V ×G, and its inverse ι−1 : Y → X with ι−1(v ⊗ χ) = (1/|G|)
∑
τ∈G vχ(τ−1)⊗ τ for (v, χ) ∈

V ×G∗. We remark that the above statements on X and Y hold for any finite abelian group.
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Fix an orthogonal decomposition V = V1 ⊕ V2 with dimVj = 1 (j = 1, 2) and denote the

projector pj : V → V with pj(V ) = Vj (j = 1, 2). Let U be a unitary transform of V , and set

U = P + Q, where P = p1U and Q = p2U . We define the time evolution T of X to be the

linear transform defined by

T (xτ ⊗ τ) = Pxσ−1τ ⊗ τ +Qxστ ⊗ τ

for (xτ ) ∈ X.

For this T , we have a nice decomposition of X by using subspaces V ⊗ χ ⊂ Y via the

above ι. For x = ι−1(ξ ⊗ χ), we have T (x) = ι−1(Uχξ ⊗ χ), where Uχ = χ(σ)P + χ(σ−1)Q.

Definition 1: (1) An element
∑
xτ⊗τ ∈ X is stationary with respect to T if |T (

∑
xτ⊗τ)µ| =

|xµ| for each µ ∈ G.

(2) An element
∑
xτ ⊗ τ ∈ X is uniform if |xτ | = |xτ ′ | for any τ, τ ′ ∈ G.

It is easy to see that ι−1(ξ ⊗ χ) is stationary and uniform for any ξ ∈ V and χ ∈ G∗. We

call such a vector ι−1(ξ ⊗ χ) pure.

Before defining the key notion of independency, we show some facts on unitary transforms.

Proposition 2: Suppose that N > 2 and a unitary transform U satisfies trUχ = trUχ for

each χ ∈ G∗. Here Uχ = χ(σ)P + χ(σ−1)Q and P,Q are as above.

(1) The traces trP and trQ are real.

(2) If detU = −1, trUχ = − trUχ for each χ ∈ G∗, and Vj (j = 1, 2) is not an eigenspace

of U , then the eigenvalues of Uχ have non-zero real parts.

(3) If detU = 1, trUχ = trUχ for each χ ∈ G∗, and Vj (j = 1, 2) is not an eigenspace of

U , then the eigenvalues of Uχ have non-zero imaginary parts.

Proof: (1) Take ζ = χ(σ) 6= ±1. By the assumption for 1, χ ∈ G∗, we have trP + trQ =

trP + trQ, and ζ trP + ζ−1 trQ = ζ−1 trP + ζ trQ. Then (ζ−1 − ζ)(trP − trP ) = 0 and

trP − trP = trQ− trQ. Since ζ 6= ±1, we have trP = trP and trQ = trQ.

(2) Note that, for x ∈ V1 (resp. x ∈ V2), p1Ux = (trP )x (resp. p2Ux = (trQ)x). This

implies that | trP | < 1 because V1 is not an eigenspace of U .

Since trU = − trU , we have trU = 0, that is, trP = − trQ. The eigenpolynomial

x2− (trP )(ζ− ζ−1)x−1 of U has its positive discriminant 4(1− (trP )2 sin2 θ) with 2i sin θ =

(ζ − ζ−1) because | trP | < 1. Hence the eigenvalues of Uχ have non-zero real parts.

(3) Since trUχ is real, we have trP = trQ. So, the eigenpolynomial x2−(trP )(ζ+ζ−1)x+1

of U has its negative discriminant −4(1 − (trP )2 cos2 θ) with 2 cos θ = (ζ + ζ−1) because

| trP | < 1. Hence the eigenvalues of Uχ have non-zero imaginary parts.

We now define key ideas to study stationary vectors of QWs on odd cycles.

Definition 3: Suppose N > 2 and that Vj (j = 1, 2) is not an eigenspace of a unitary

transform U below.

(1) A unitary tranform U with detU = −1 is eigen-independent with respect to G if

trUχ = trUχ = − trUχ for each χ ∈ G∗ and the following values are all distinct: ±λχ,+λψ,+
for {χ, ψ} ⊂ G∗ except χψ = 1. Here λχ,+ is the eigenvalues of Uχ with positive real part.
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(2) A unitary tranform U with detU = 1 is eigen-independent with respect to G if trUχ =

trUχ = trUχ for each χ ∈ G∗ and the following values are all distinct: λχ,ελψ,δ for χ, ψ ∈ G∗0,

and ε, δ = ±. Here G∗0 denotes the set consisting of χ ∈ G∗ such that the imaginary part of

χ(σ) is nonnegative, and λχ,+ (resp. λχ,−) denotes the eigenvalue of Uχ with positive (resp.

negative) imaginary part.

Remark 4: For an eigen-independent 2× 2 matrix U with respect to G, the following holds.

(1) |G| is odd.

(2) U is neither diagonal nor anti-diagonal.

(3) UχUψ 6= UψUχ for distinct χ, ψ.

For (1), the character χ with χ(σ) = −1 breaks eigen-independency, because λχ,+ = 1

and λχ,+λψ,+ = λ1,+λψ,+ for any ψ 6= 1, χ.

For (2), all the eigenvalues of Uχ for an anti-diagonal matrice U are ±1.

For (3), suppose UχUψ = UψUχ. Then we have[
χ(σ) 0

0 χ(σ−1)

]
U

[
ψ(σ) 0

0 ψ(σ−1)

]
=

[
ψ(σ) 0

0 ψ(σ−1)

]
U

[
χ(σ) 0

0 χ(σ−1)

]
.

By χ 6= ψ and the fact that |G| is odd, it follows that χψ−1(σ) 6= ±1. so, the (2,1)-entry and

(1,2)-entry of U are zeros and U is diagonal, which contradicts to the assumption in Definition

3.

We now state our main result.

Theorem 5: (1) For an eigen-independent unitary transform U with detU = −1, every

stationary vector in X is pure. In particular, such a stationary vector is uniform.

(2) For an eigen-independent transform U with detU = 1, every stationary vector in X is

pure or such a vector as
∑
τ ((vχ,εχ(τ−1) + vχ,εχ(τ−1))⊗ τ) for some χ ∈ G∗0 and ε ∈ {±1},

where vχ,ε (resp. vχ,ε) is an eigenvector of Uχ (resp. Uχ) with respect to λχ,ε (resp. λχ,ε). In

particular, such a stationary vector is not necessarily uniform.

Example 6: Here is an example that is stationary, but not uniform in the case where G =

{σ, σ2, σ3 = σ0 = e} (e is the unit) and U = 1√
2

[
1 −1
1 1

]
.

Set ω = (−1 +
√

3i)/2 and G∗ = {χ0, χ1, χ2}, where χj denotes the character with

χj(σ) = ωj . The other quantities are as follows. The eigenvalues of Uχ1
and Uχ2

are λχ1,+ =

λχ2,+ = (−1 +
√

7i)/(2
√

2), λχ1,− = λχ2,− = (−1 −
√

7i)/(2
√

2). The eigenvectors of Uχ1

(resp. Uχ2
) with respect to λχ1,+ (resp. λχ2,+) are

w1 =

[
−ω

ω2 −
√

2λχ1,−

]
=

1

2

[
1−
√

3i

(
√

7−
√

3)i

]
(resp. w2 =

[
−ω2

ω −
√

2λχ2,−

]
=

1

2

[
1 +
√

3i

(
√

7 +
√

3)i

]
).
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We now have a vector

x =

2∑
j=0

(w1ω
−j + w2ω

−2j)⊗ σj =

[
1√
7i

]
⊗ σ0 +

[
−2

−3−
√
7i

2

]
⊗ σ1 +

[
1

3−
√
7i

2

]
⊗ σ2,

which is stationary, but not uniform because |xe|2 = |xσ|2 = 8 6= |xσ2 |2 = 5.

3 Preliminaries

In this section, we explain basic facts, which we use in our proof of Theorem 5.

Proposition 7: A set of distinct characters of a finite abelian group G is linearly independent

over C

Proof: See a textbook on the theory of representation theory of finite groups.

Proposition 8: Let f(x) ∈ C[x1, . . . , xn] be a polynomial of degree at most one. Suppose

that, for some distinct non-zero values λ1, . . . , λn, we have f(λk1 , . . . , λ
k
n) = 0 for each k =

1, 2, . . . , n+ 1. Then f(x) = 0, i.e., all the coefficients of f(x) are zero.

Proof: Set f(x) =
∑n
j=0 ajxj , where x0 = 1. The assumption gives a linear equation

[λkj ][aj ] = 0. Since λjs are distinct, its coefficient matrix is regular, and its solution is

trivial.

4 Proofs

We prove Theorem 5. Before starting, we remark properties of eigenvalues of Uχ. In the

notation of Definition 3, we state formulas as follows.

For U with detU = −1 (resp. detU = 1), we have the following:

λχ,+ = λχ,+, λχ,− = λχ,−, λχ,+λχ,− = −1, λχ,+ = −λχ,−, λχ,− = −λχ,+
(resp. λχ,+ = λχ,−, λχ,− = λχ,+, λχ,+λχ,− = 1, λχ,+ = λχ,+, λχ,− = λχ,−).

Hereafter, we write λ∗,∗ (resp. a∗,∗) for λ∗,∗ (resp. a∗,∗ below).

We first prove (1). Take an eigenvector wχ,+ of the eigenvalue λχ,+ of Uχ for χ ∈ G∗, and

an eigenvector wχ,− of the eigenvalue λχ,− of Uχ with negative real part for χ ∈ G∗.
We set a vector x = (xτ ) as

xτ =
∑
χ∈G∗

aχ,+χ(τ−1)wχ,+ + aχ,−χ(τ−1)wχ,−, aχ,± ∈ C with χ ∈ G∗.

Then we have

Tn(x)τ =
∑
χ∈G∗

aχ,+χ(τ−1)λnχ,+wχ,+ + aχ,−χ(τ−1)λnχ,−wχ,−,

for each n = 1, 2, 3, . . ..

We now solve the following system of equations for a stationary vector x:

|xτ |2 = |Tn(x)τ |2, for τ ∈ G,n = 1, 2, 3, . . . .
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More explicitly, the above equations for τ are as follows:

|xτ |2 =
∑

χ,ψ∈G∗,
ε,δ=±

aχ,εaψ,δχψ(τ−1)〈wχ,ε, wψ,δ〉(λχ,ελψ,δ)n. (∗)

We determine all the coefficients of (λχ,ελψ,δ)
n in the following four steps.

Step I: Consider the coefficients for products of eigenvalues with λχ,ελψ,δ = −1. In this

case, we have (ψ, δ) = (χ, ε) for each χ. Here ε denotes the sign different from ε. By

Propositon 8 and the eigen-independency, we have equations∑
χ

aχ,εaχ,εχ
2(τ−1)〈wχ,ε, wχ,ε〉 = 0

for each τ ∈ G. Since |G| is odd, χ 7→ χ2 is an isomorphism of G∗. Hence, by Proposition

7 and 〈wχ,ε, wχ,ε〉 6= 0 for χ 6= 1 (see Remark 4 (3)), we conclude that aχ,εaχ,ε = 0 for each

χ ∈ G∗, 6= 1.

Step II: Consider the coefficients for pairs {χ, ψ} ⊂ {χ, χ}. In this case, the products of

eigenvalues of Uχ and Uχ are as follows:

λχ,ελχ,ε = (λχ,ε)
2 = (λχ,ε)

2, λχ,ελχ,ε = 1, λχ,ελχ,ε = −(λχ,ε)
2 = −(λχ,ε)

2.

By the summands in (∗) corresponding to the power of (λχ,+)2 = λχ,+λχ,+ = λχ,−λχ,−,

we have

aχ,+aχ,+χ
2(τ−1)〈wχ,+, wχ,+〉+ aχ,−aχ,−χ

2(τ−1)〈wχ,−, wχ,−〉 = 0

for each τ ∈ G. As before, aχ,+aχ,+ = 0, aχ,−aχ,− = 0 for χ 6= 1. Combining with Step I, we

conclude that for χ ∈ G∗, 6= 1, one of (aχ,+, aχ,−), (aχ,+, aχ,−) is equal to (0, 0).

Step III: Consider the coefficients for pairs χ, ψ 6= 1 and {χ, χ} ∩ {ψ,ψ} = ∅.
By the arguments in Steps I and II, we may assume that (aχ,+, aχ,−) 6= (0, 0), (aχ,+, aχ,−) =

(0, 0), (aψ,+, aψ,−) = (0, 0).

By the summand in (∗) corresponding to the power of λχ,+λψ,+, we have

aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉+ aψ,−aχ,−ψχ(τ−1)〈wψ,−, wχ,−〉 = 0

for each τ ∈ G. Since χψ = χψ is equivalent to χ2 = ψ2, i.e., χ = ψ, we conclude aχ,+aψ,+ = 0

and aψ,−aχ,− = 0. Similarly, by arguing for the power of λχ,+λψ,− = λψ,+λχ,−, we have

aχ,+aψ,− = 0 and aψ,+aχ,− = 0. Hence (aψ,+, aψ,−) = (0, 0), which is a conclusion of Step

III.

By Steps I, II, and III, we observe that the number of pairs (aχ,+, aχ,−) 6= (0, 0) (χ 6= 1)

is at most 1 for a stationary vector. We now go to the final step.

Step IV: Suppose that aψ,± = 0 for all ψ 6= 1, χ. Here χ 6= 1. Similarly as above, we have

the following equations:

aχ,+a1,+χ(τ−1)〈wχ,+, w1,+〉+ a1,−aχ,−χ(τ−1)〈w1,−, wχ,−〉 = 0,

aχ,+a1,−χ(τ−1)〈wχ,+, w1,−〉+ a1,+aχ,−χ(τ−1)〈w1,+, wχ,−〉 = 0
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for each τ ∈ G. Hence we have

aχ,+a1,+ = 0, a1,−aχ,− = 0, aχ,+a1,− = 0, a1,+aχ,− = 0.

Therefore, if (aχ,+, aχ,−) 6= (0, 0) (resp. (a1,+, a1,−) 6= (0, 0)), then (a1,+, a1,−) = (0, 0) (resp.

(aχ,+, aχ,−) = (0, 0)). We complete the proof of (1).

We next prove (2). Set notations as in Definition 3 (2).

We set a vector x = (xτ ) as

xτ =
∑
χ∈G∗

aχ,+χ(τ−1)wχ,+ + aχ,−χ(τ−1)wχ,−, aχ,± ∈ C with χ ∈ G∗.

We solve |Tn(x)τ | = |xτ | (n = 1, 2, 3, . . .) in a similar way for the statement (1).

Step I. Consider a pair of χ, χ 6= 1. Looking at the coefficients of the powers of λ2χ,+ and

λ2χ,− in the stationary condition, we have the following equations

aχ,+aχ,−χ
2(τ−1)〈wχ,+, wχ,−〉+ aχ,+aχ,−χ

2(τ−1)〈wχ,+, wχ,−〉 = 0,

aχ,−aχ,+χ
2(τ−1)〈wχ,−, wχ,+〉+ aχ,−aχ,+χ

2(τ−1)〈wχ,−, wχ,+〉 = 0

for each τ ∈ G. Then aχ,+aχ,− = 0, aχ,+aχ,− = 0, aχ,−aχ,+ = 0, aχ,−aχ,+ = 0. Hence,

changing χ, χ,± if necessary, we have (aχ,−, aχ,−) = (0, 0) or (aχ,+, aχ,−) = (0, 0) for χ ∈ G∗.

We consider the above two cases of (aχ,−, aχ,−) = (0, 0) and (aχ,+, aχ,−) = (0, 0) as {II-a,

III-a} and {II-b, III-b} below respectively.

First, we fix χ and assume (aχ,−, aχ,−) = (0, 0) and (aχ,+, aχ,+) 6= (0, 0) in Steps II-a and

III-a.

Step II-a. For a pair of {(χ,+), (χ,+)} and {(ψ,+), (ψ,+)} (ψ ∈ G∗, 6= χ, χ), we have the

following equations:

aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉+ aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉

+ aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉+ aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉 = 0

for each τ ∈ G. Hence we have aχ,+aψ,+ = 0, aχ,+aψ,+ = 0, aχ,+aψ,+ = 0, aχ,+aψ,+ = 0. So

we conclude (aψ,+, aψ,+) = (0, 0).

Similarly, for a pair of {(χ,+), (χ,+)} and {(ψ,−), (ψ,−)} (ψ ∈ G∗, 6= χ, χ), we can

conclude (aψ,−, aψ,−) = (0, 0). Hence (aψ,+, aψ,−), (aψ,+, aψ,−) = (0, 0).

Step III-a. We now have only to consider one non-trivial character χ and x =
∑
τ xτ ⊗τ ∈

V [G] with

xτ = (a1,+w1,+ + a1,−w1,− + aχ,+wχ,+χ(τ−1) + aχ,+wχ,+χ(τ−1))⊗ τ

for each τ ∈ G. For a pair of {(χ,+), (χ,+)} and (1,±), we have the following equations:

a1,+aχ,+χ(τ−1)〈w1,+, wχ,+〉+ a1,+aχ,+χ(τ−1)〈w1,+, wχ,+〉 = 0,

a1,−aχ,+χ(τ−1)〈w1,−, wχ,+〉+ a1,−aχ,+χ(τ−1)〈w1,−, wχ,+〉 = 0
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for each τ ∈ G. Hence we have a1,+aχ,+ = 0, a1,+aχ,+ = 0, a1,−aχ,+ = 0, a1,−aχ,+ = 0.

Therefore (a1,+, a1,−) = (0, 0). This completes the proof in the case (aχ,+, aχ,+) 6= (0, 0).

We next fix χ and may assume (aχ,+, aχ,−) = (0, 0) and (aχ,+, aχ,−) 6= (0, 0) in Steps II-b

and III-b. This case is also similar.

Step II-b. By similar argument, we have the following equations: in the case of (ψ,±), (ψ,±)

(ψ 6= 1) (the coefficients of the power of λχ,+λψ,−),

aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉+ aχ,+aψ,+χψ(τ−1)〈wχ,+, wψ,+〉

+ aψ,−aχ,−ψχ(τ−1)〈wψ,−, wχ,−〉+ aψ,−aχ,−ψχ(τ−1)〈wψ,−, wχ,−〉 = 0

for each τ ∈ G. Hence we have aχ,+aψ,+ = 0, aχ,+aψ,+ = 0, aψ,−aχ,− = 0, aψ,−aχ,− = 0.

In the other case of (ψ,±), (ψ,±) (ψ 6= 1) (the coefficients of the power of λχ,+λψ,+),

aχ,+aψ,−χψ(τ−1)〈wχ,+, wψ,−〉+ aχ,+aψ,−χψ(τ−1)〈wχ,+, wψ,−〉

+ aψ,+aχ,−ψχ(τ−1)〈wψ,+, wχ,−〉+ aψ,+aχ,−ψχ(τ−1)〈wψ,+, wχ,−〉 = 0

for each τ ∈ G. Hence we have aχ,+aψ,− = 0, aχ,+aψ,− = 0, aψ,+aχ,− = 0, aψ,+aχ,− = 0.

By solving the above equations, we conclude (aψ,+, aψ,−), (aψ,+, aψ,−) = (0, 0).

Step IV. This step is also similar to Step II-a. For the coefficients of the power of λ1,+λχ,+
and those of the power of λ1,−λχ,+ , we have the following equation:

a1,+aχ,−χ(τ−1)〈w1,+, wχ,−〉+ aχ,+a1,−χ(τ−1)〈wχ,+, w1,−〉 = 0,

a1,−aχ,−χ(τ−1)〈w1,−, wχ,−〉+ aχ,+a1,+χ(τ−1)〈wχ,+, w1,+〉 = 0

for each τ ∈ G. So we have a1,+aχ,− = 0, aχ,+a1,− = 0, a1,−aχ,− = 0, aχ,+a1,+ = 0. Hence

a1,± = 0. This completes the proof.

5 The Hadamard walks

In this section, we consider the Hadamard matrix U = (1/
√

2)

[
1 1
1 −1

]
.

Let N be an odd number ≥ 3. We first explain a numerical criterion for the eigen-

independency.

Proposition 9: For θ ∈ R, set θ′ ∈ [−π/2, π/2] such as
√

2 sin θ′ = sin θ. Then the above

2 by 2 matrix U is eigen-independent with respect to N if and only if the set E = {θ′k + θ′l |
1 ≤ k ≤ l ≤ N − 1} ∪ {θ′k | k = 1, 2, . . . , N − 1} contains (N2 + 1)/2 numbers exactly, where

θk = 2πk/N (k = 1, 2, . . . , N − 1).

Proof: In this case, the eigenvalues of Uχ are the roots of x2 − (χ(σ) − χ(σ−1))
√

2
−1
x − 1

as in the notation in Section 2. For χ(σ) = eiθ, we have the arguments of the eigenvalues is

θ′ as above. The number of pairs (k, l) with k, l ∈ [1, N − 1] and k ≤ l is N(N − 1)/2. For a

pair (k, l) with k + l = N , we have θ′k + θ′l = 0. So, it is necessary and sufficient for U to be

eigen-independent that E contains the following number of distinct elements:

N(N − 1)

2
+N − 1− N − 1

2
+ 1 =

N2 + 1

2
.
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In the case of U = (1/
√

2)

[
1 −1
1 1

]
, we have a similar result as follows.

Proposition 10: For θ ∈ R, set θ′ ∈ [0, π] such as
√

2 cos θ′ = cos θ. Then the 2 by 2 matrix

U = (1/
√

2)

[
1 −1
1 1

]
is eigen-independent with respect to N if the set E = {±θ′k ± θ′l | 1 ≤

k ≤ l ≤ (N − 1)/2} ∪ {±θ′k | k = 1, 2, . . . , (N − 1)/2} contains (N2 + 1)/2 numbers exactly,

where θk = 2πk/N (k = 1, 2, . . . , N − 1).

Proof: We show this in a similar way to that of Proposition 9. Set N ′ = (N − 1)/2.

The number of pairs (k, l) with k, l ∈ [1, N ′ and k ≤ l is N ′(N ′ + 1)/2. For a pair (k, k),

we have a zero as +θ′k − θ′k,−θ′k + θ′k = 0. So, it is necessary and sufficient for U to be

eigen-indepedent that E contains the following number of distinct elements:

N ′(N ′ + 1)

2
· 4 + 2N ′ − 2N ′ + 1 =

N2 + 1

2
.

We next consider eigen-independency for odd prime numbers N = p.

Theorem 11: Let N be an odd prime number p. Then U = (1/
√

2)

[
1 1
1 −1

]
is eigen-

independent with respect to G = Z/pZ.

To prove the theorem, we change notation for eigenvalues. Before that, we remark on

choices of two eigenvalues.

Proposition 12: Let U be a 2 by 2 matrix with detU = −1 and trUχ + trUχ as in Theorem

5. Let E = {±λχ,+λψ,+ | {χ, ψ} ⊂ G∗ expect χ = ψ and χ 6= 1}.
(1) For χ, ψ ∈ G∗, by replacing λχ,+ by λχ,− = −λχ,+, the subset {±λχ,+λψ,+,±λχ,+λψ,+}

of E coincides {∓λχ,+λψ,+,∓λχ,+λψ,+} of E.

(2) The set E contains exactly N2 + 1 distinct elements if and only if so does the set

E′ = {±λχ,εχλψ,εψ | {χ, ψ} ⊂ G∗ expect χ = ψ and χ 6= 1}. Here εχ denotes any sign ± for

χ ∈ G∗.

We can easily prove the proposition, and omit the proof.

We use algebraic number thoery on the cyclotomic field K = Q(ζ), where ζ is a primitive

p-th root of the unity. To do that, we have only to consider the eigenvalues of Ũ =
√

2U ,

which are algebraic integers. Let ϕχ = x2 − (χ(σ)− χ(σ)−1)x− 2 be the eigenpolynomial of

Ũ . For basic facts on algebraic number theory, see [23, §16, §17], [26, Chap. 2], for example.

Proof: Let dχ = χ(σ)2 +χ(σ)−2 + 6 be the discriminant of ϕχ. Note that dχ ∈ K+ = K ∩R.

We show the following properties of dχ.

(1) For χ 6= 1, set ζ = χ2(σ), which is still a primitive p-th root of unity because p is odd.

Let us consider the ideal Iχ = dχOK = (ζ2 + 6ζ + 1)OK . The norm NK/Q(ζ2 + 6ζ + 1) can

be computed as follows:

NK/Q(ζ2 + 6ζ + 1) = NK(
√
2)/Q(

√
2)(−ζ − α

2)NK(
√
2)/Q(

√
2)(−ζ − α

−2) = Φp(−α2)Φp(−α−2),
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where α = 1 +
√

2 (the fundamental unit of Z[
√

2]), and Φp(x) = (xp − 1)/(x− 1). Note that

−α2 is a root of x2 + 6x+ 1. The product of these norms is equal to y2p by the equality

Φp(−α2) =
(−α2)p − 1

−α2 − 1
= αp−1

αp + α−p

α+ α−1
= αp−1

2yp
√

2

2
√

2
= αp−1yp.

Here we denote αp = xp + yp
√

2 with xp, yp ∈ Z. This yp is not square for p 6= 7 because x2p +

1 = 2y2p holds and x2+1 = 2y4 has only the positive integral solutions (x, y) = (1, 1), (239, 13)

shown by Ljunggren [19], which corresponds to p = 1, 7 in our cases. Hence the order of OK/Iχ
is y2p, and that of OK+

/(dχ) is yp, which is not square for p 6= 7.

(2) For χ 6= 1, the norm NK/Q(dχ) = y2p is odd because x2p+ 1 = 2y2p for any odd p implies

that xp, yp are odd. Also, NK/Q(d1) is a power of 2.

(3) dχ, dψ with {χ, χ} 6= {ψ,ψ} are mutually prime. Indeed, since (1 − ζ)OK for any

primitive p-th of 1 is the prime ideal P above pZ, we have dχ − dψ = χ2(σ)(1 − χ(σ)−4) −
ψ2(σ)(1 − ψ(σ)−4) ∈ P for such χ, ψ 6= 1. On the other hand, dχ ≡ 2 mod P for χ 6= 1, so

dχ, dψ are mutually prime. Note that this also holds for χ = 1 6= ψ.

We use these properties of dχ. It follows that K+(
√
dχ) with χ 6= 1 is ramified over K+

outside 2 and p, and so is K(λχ) over K. Since dχs are mutually prime, the extensions K(λχ)

are mutually irrelevant. Hence the extension K({λχ | χ ∈ G∗})/K is of degree 2p with Galois

group ∼= (Z/2Z)p. We also have K(λχλψ) = K(λχ, λψ) for χ 6= ψ because we can verify the

fixed subgroup of λχλψ is trivial. Indeed, K(λχ) 6= K(λψ), and the conjugates of λχ, λψ, λχλψ
over K are −2λ−1χ ,−2λ−1ψ , 4λ−1χ λ−1ψ respectively. Even if χ = ψ, then K(λ2χ) = K(λχ) holds.

Hence λχλψ corresponds to the extension K(λχ, λψ) uniquely. Therefore, if λχ1
λχ2

= λψ1
λψ2

,

then we have {χ1, χ2} = {ψ1, ψ2}. This implies the eigen-independency for p 6= 7.

Consider the case of p = 7. For a ∈ Z/7Z, set G∗ = {χa | χa(ζk) = ζak, a ∈ Z/7Z}
and ϕa = ϕχa . In this case, we can verify that the polynomial ϕa has the roots λa =

ζa + ζ3a + ζ−3a,−ζ−a− ζ3a− ζ−3a for a = 1, 2, 3. We compute the elements λ1λ2, λ2λ3, λ1λ3
and get the following explicitly:

λ1λ2 = −ζ1 + ζ2 + ζ3 + ζ5, λ2λ4 = −ζ2 + ζ3 + ζ4 + ζ6, λ4λ1 = ζ1 − ζ4 + ζ5 + ζ6.

Since ζ, . . . , ζ6 forms a Z-basis of OK = Z[ζ], the above elements times ±1 are different from

each other clearly. This implies the eigen-independency for p = 7.

Theorem 13: Let N be an odd prime number p. Then U = (1/
√

2)

[
1 −1
1 1

]
is eigen-

independent with respect to G = Z/pZ.

Proof: In this case, we use the eigenpolynomial φχ(x) = x2− (χ(σ) +χ(σ−1))x+ 2 of
√

2Uχ,

and its discriminant dχ = χ(σ)2 + χ(σ)−2 − 6.

Similarly we set ζ = χ(σ)2, which is also a primitive p-th root of unity. Then we define

an ideal Iχ := dχOK = (ζ2 − 6ζ + 1)OK . As in the proof of Theorem 11, we have NK/Q(ζ2 −
6ζ+ 1) = x2p. Here α,Φp(x) are the same as those in the proof of Theorem 11. Ljunggren [20]

implies that x4 + 1 = 2y2 has only the positive integral solution (x, y) = (1, 1), so xp is not

square for p 6= 1. By a similar argument, the order of OK/Iχ is x2p, and that of OK+
/Iχ is

xp, which is not square. As in the proof of Theorem 11, this implies the eigen-independency

of U .
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Finally we state two conjectures in the case of two-state Hadamard walks (moving shift

and flip-flop shift). The first one is on eigen-independency, and the second one is on statinary

measures, which can be derived from the first one.

Conjecture 14: For an odd integer N ≥ 3, the matrices (1/
√

2)

[
1 1
1 −1

]
, (1/

√
2)

[
1 −1
1 1

]
are eigen-independent with respect to G = Z/NZ, respectively.

Conjecture 15: For an odd integer N ≥ 3, in the QW with the matrix (1/
√

2)

[
1 1
1 −1

]
(resp. (1/

√
2)

[
1 −1
1 1

]
) as coin, every stational vector is pure and uniform (resp. pure or

such a vector as in Theorem 5 (2)).

We have proved those conjectures for the odd primes N in this paper.
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