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We explore methods to generate quantum coherence through unitary evolutions, by intro-

ducing and studying the coherence generating capacity of Hamiltonians. This quantity

is defined as the maximum derivative of coherence that can be achieved by a Hamilto-
nian. By adopting the relative entropy of coherence as our figure of merit, we evaluate

the maximal coherence generating capacity with the constraint of a bounded Hilbert-

Schmidt norm for the Hamiltonian. Our investigation yields closed-form expressions for
both Hamiltonians and quantum states that induce the maximal derivative of coherence

under these conditions. Specifically, for qubit systems, we solve this problem comprehen-

sively for any given Hamiltonian, identifying the quantum states that lead to the largest
coherence derivative induced by the Hamiltonian. Our investigation enables a precise

identification of conditions under which quantum coherence is optimally enhanced, offer-

ing valuable insights for the manipulation and control of quantum coherence in quantum
systems.
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1 Introduction

The paradigm of quantum resource theories [1] provides a structured approach to investigate

the characteristics of quantum systems and their utility in quantum technologies. Notably,

the resource theories of entanglement [2] and coherence [3, 4] stand out as significant exam-

ples within this framework. The resource theory of entanglement explores the capabilities

and constraints of spatially separated agents who operate within their local quantum labora-

tories and communicate via classical channels [2]. On the other hand, the resource theory of

coherence delves into the challenges and opportunities faced by an agent who is limited in the

abilities to generate and preserve quantum coherence [3, 4]. Furthermore, the framework of

quantum resource theories has been adeptly applied to the field of quantum thermodynam-

ics [5, 6]. This application has enabled a deeper understanding of how quantum systems can

be manipulated within the bounds of energy constraints.

Every quantum resource theory is grounded on defining two basic elements: free states

and free operations [1]. Free states refer to quantum states that can be easily generated
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within a setting that is justified by physical principles. Specifically, within the resource

theory of coherence, free states are identified as incoherent states [7]. These are states which

are diagonal in a certain reference basis, denoted by |i⟩. The impetus behind exploring this

theory is rooted in the phenomenon of unavoidable decoherence, suggesting that incoherent

states are those that remain unchanged in the presence of decoherence.

On the aspect of free operations, these ideally are quantum manipulations that can be

easily executed, based on the physical considerations on which the resource theory is based.

For instance, in the resource theory of entanglement, the set of local operations and classical

communication embodies a set of free operations endowed with tangible physical interpreta-

tion [8]. Within the context of the resource theory of coherence, various sets of free operations

have been scrutinized [7, 9, 10, 11, 12, 13, 14]. A common characteristic among these sets is

their inability to generate coherence from incoherent states.

At the heart of any quantum resource theory lies the fundamental inquiry into the feasi-

bility of state transformations. It is customary to consider the scenario where n copies of a

given initial state ρ are at one’s disposal, with the ambition to transform these into m copies

of a desired target state σ. This process is envisioned to accommodate an error margin that

diminishes as the number of initial state copies, n, increases. The efficiency of this trans-

formation is quantified by the highest feasible ratio of m/n, signifying the transformation

rate.

Within the framework of the resource theory of coherence, the optimal rate at which one

quantum state can be transformed into another is precisely determined when focusing on the

set of maximally incoherent operations (MIO). These operations are characterized by their

inability to produce coherence from states that are initially incoherent [10]. The maximal

transformation rate in this setting is encapsulated by the formula [9]:

R(ρ→ σ) =
Cr(ρ)

Cr(σ)
, (1)

where Cr(ρ) represent the relative entropy of coherence for the initial and target states,

respectively. The relative entropy of coherence for a state ρ is defined as [7]:

Cr(ρ) = min
σ∈I

S(ρ||σ) = S(∆[ρ])− S(ρ), (2)

with the quantum relative entropy S(ρ||σ) = Tr[ρ log2 ρ]−Tr[ρ log2 σ], the von Neumann en-

tropy S(ρ) = −Tr[ρ log2 ρ], and ∆[ρ] =
∑

i |i⟩⟨i| ρ |i⟩⟨i| representing the operation of complete

dephasing in the incoherent basis. A similar quantity has been studied previously also within

the resource theory of entanglement [15].

The relative entropy of coherence is an important example of a coherence measure [7].

Essentially, a coherence measure, represented by C(ρ), quantifies the amount of coherence

in a quantum state ρ. Its fundamental characteristic is that it is non-increasing under the

application of free operations, denoted as Λf , that are permissible within the resource theory

framework, i.e., C(Λf [ρ]) ≤ C(ρ) for any quantum state ρ and any free operation Λf . The

literature offers a diverse range of coherence quantifiers, each grounded in either physical

principles or mathematical foundations [10, 7, 16, 17, 18, 19, 14].

Considering the significance of quantum coherence in quantum information science and

quantum technology [3, 4], it becomes essential to explore and comprehend the most efficient
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methodologies for its generation. One strategy to create quantum coherence involves em-

ploying a static quantum channel, represented by Λ. This approach can successfully create

coherence from an initially incoherent state, contingent upon the condition that Λ is not in

the set MIO. The pursuit of identifying and refining optimal methods for the generation of co-

herence through static quantum channels has garnered attention and been subject to detailed

examination in various studies [7, 20, 21, 22, 23].

In this article, we focus on the optimal methods to generate coherence via dynamical

evolutions, focusing specifically on unitary evolutions Ut = e−itH . Using the relative entropy

of coherence as a figure of merit, we investigate the maximal derivative of Cr achievable in

this setting, maximized over all initial states ρ and all Hamiltonians H with bounded Hilbert-

Schmidt norm. This quantity has a clear operational meaning via Eq. (1), corresponding to

the maximal coherence generation rate achievable via Hamiltonians with bounded Hilbert-

Schmidt norm. We characterize optimal initial states and optimal Hamiltonians for any

system of dimension d. For qubit systems, we provide optimal input state for any given

Hamiltonian.

2 Coherence generating capacity of Hamiltonians

For a Hamiltonian H, we define the coherence generating capacity of H as the maximal

increase of coherence achievable via a unitary evolution Ut = e−itH at time t = 0, i.e.,

Cgen(H) = max
ρ

Cr(e
−iHtρeiHt)

dt

∣∣∣∣
t=0

. (3)

Functions of this form have been previously studied in entanglement theory, in the context of

entanglement generation via non-local Hamiltonians [24, 25].

The following proposition provides an alternative expression for the coherence generating

capacity.

Proposition 1 For any Hamiltonian H it holds that

Cgen(H) = max
ρ

iTr(H[ρ, log2 ∆(ρ)]). (4)

Proof. We define the state ρt = e−iHtρeiHt and ρ̇t = dρt/dt. It then holds [26, 27]

d

dt
S(ρt) = −Tr[ρ̇t log2 ρt]. (5)

A proof of this equality is given in the Appendix. For the time derivative of coherence we

obtain

dCr(ρt)

dt
=
dS(∆[ρt])

dt
= −Tr

[(
d

dt
∆(ρt)

)
log2 ∆(ρt)

]
= −Tr [∆(ρ̇t) log2 ∆(ρt)] , (6)

where we have used the fact that dephasing commutes with the time derivative, i.e.,

d

dt
∆(ρt) = ∆(ρ̇t). (7)
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Using the von Neumann equation ρ̇t = −i[H, ρt], Eq. (6) can be expressed as

dCr(ρt)

dt
= iTr [∆([H, ρt]) log2 ∆(ρt)] . (8)

As we further show in the Appendix,

Tr [∆(A) log2 ∆(B)] = Tr [A log2 ∆(B)] (9)

holds true for any Hermitian matrix A and any positive matrix B. Choosing A = i∆([H, ρt])

and B = ρt we further obtain

dCr(ρt)

dt
= iTr [[H, ρt] log2 ∆(ρt)] . (10)

At time t = 0 we further have

dCr(ρt)

dt

∣∣∣∣
t=0

= iTr[[H, ρ] log2 ∆(ρ)], (11)

where ρ = ρt=0. This expression can be further written as

dCr(ρt)

dt

∣∣∣∣
t=0

= iTr(H[ρ, log2 ∆(ρ)]). (12)

Performing the maximum over all states ρ completes the proof. □
In the following, our goal is to evaluate the maximal coherence generating capacity over

all Hamiltonians with the constraint ||H||2 ≤ 1, where ||M ||2 =
√
Tr[M†M ] is the Hilbert-

Schmidt norm of a matrix M . As we will see, this problem is closely related to the variance

of the surprisal, as investigated in [28] (a similar technique has been used earlier in [25]).

For a probability distribution p = (p0, . . . , pd−1), the surprisal − log2 pi is a quantifier of the

surprise to obtain the outcome i. The variance of the surprisal is given as

f(p) =
∑
i

pi (− log2 pi)
2 −

[∑
i

pi (− log2 pi)

]2
. (13)

As we will show in the following theorem, the maximal coherence generating capacity for a

system of dimension d is closely related to the maximal variance of the surprisal f .

Theorem 1 It holds that

max
||H||2≤1

Cgen(H) = max
p

√
2f(p). (14)

Proof. Defining the Hermitian matrix

M = i[ρ, log2 ∆(ρ)], (15)

the derivative of the relative entropy of coherence at time zero can be written as

dCr(ρt)

dt

∣∣∣∣
t=0

= Tr(HM). (16)
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We can now perform the maximization over all Hamiltonians H with the property ||H||2 ≤ 1.

For this, we use Hölder’s inequality, arriving at

dCr(ρt)

dt

∣∣∣∣
t=0

= Tr(HM) ≤ ||H||2||M ||2. (17)

For a given M , this inequality is saturated if H is chosen as

H =
M

||M ||2
. (18)

Maximizing over all Hamiltonians with bounded Hilbert-Schmidt norm, we obtain

max
||H||2≤1

dCr(ρt)

dt

∣∣∣∣
t=0

=
Tr[M2]

||M ||2
= ||M ||2 = ∥[ρ, log2 ∆(ρ)]∥2 . (19)

To complete the proof of the theorem, it remains to maximize ∥[ρ, log2 ∆(ρ)]∥2 over all

states ρ. Denoting with ρij the elements of ρ, we obtain

[ρ, log2 ∆(ρ)] = ρ log2 ∆(ρ)− [log2 ∆(ρ)] ρ (20)

=
∑
i,j

(ρij log2 ρjj − ρij log2 ρii) |i⟩⟨j|

=
∑
i,j

ρij (log2 ρjj − log2 ρii) |i⟩⟨j| .

With this, we obtain the following:

∥[ρ, log2 ∆(ρ)]∥22 =
∑
i,j

|ρij |2 (log2 ρjj − log2 ρii)
2
. (21)

Since ρ is a quantum state, it holds that

ρiiρjj ≥ |ρij |2, (22)

which implies the inequality

∥[ρ, log2 ∆(ρ)]∥22 ≤
∑
i,j

ρiiρjj (log2 ρjj − log2 ρii)
2
. (23)

Let us now define the function

f(ρ) =
1

2

∑
i,j

ρiiρjj (log2 ρjj − log2 ρii)
2
. (24)

Note that the right-hand side of Eq. (23) corresponds to 2f(ρ). As we prove in the Appendix,

f(ρ) can also be written as

f(ρ) =
∑
i

ρii (− log2 ρii)
2 −

[∑
i

ρii (− log2 ρii)

]2
. (25)
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Note that this function coincides with the variance of the surprisal function defined in Eq. (13),

if we choose pi = ρii.

Consider now a pure state of the form

|ψ⟩ =
d−1∑
i=0

√
qi |i⟩ , (26)

where the probabilities qi are chosen such that the variance of the surprisal is maximal.

Consider now the density matrix σ = |ψ⟩⟨ψ|. Due to the arguments presented above, it is

clear that σ maximizes the function f , i.e., f(σ) = maxρ f(ρ). Moreover, the matrix elements

of σ fulfill σiiσjj = |σij |2, which implies

2f(σ) =
∑
i,j

σiiσjj (log2 σjj − log2 σii)
2

(27)

=
∑
i,j

|σij |2 (log2 σjj − log2 σii)
2

= ∥[σ, log2 ∆(σ)]∥22 .

Collecting the arguments presented above, we have

max
ρ

∥[ρ, log2 ∆(ρ)]∥22 ≤ max
ρ

2f(ρ) = 2f(σ) (28)

= ∥[σ, log2 ∆(σ)]∥22
≤ max

ρ
∥[ρ, log2 ∆(ρ)]∥22 .

This proves that

max
ρ

∥[ρ, log2 ∆(ρ)]∥22 = 2f(σ), (29)

and the proof of the theorem is complete. □
An optimal initial state for coherence generation can be given as follows:

|ψ⟩ = √
γ |0⟩+

√
1− γ

d− 1

d−1∑
i=1

|i⟩ , (30)

where γ ∈ (0, 1) is chosen such that the probability distribution (γ, 1−γ
d−1 , . . . ,

1−γ
d−1 ) maximizes

the variance of the surprisal [28, 25]. Following the arguments from the proof of Theorem 1,

an optimal Hamiltonian is given by Eq. (18) with

M = i[ψ, log2 ∆(ψ)] = i
∑
k,l

ψkl (log2 ψll − log2 ψkk) |k⟩⟨l|

= i
√
γ

√
1− γ

d− 1

(
log2

1− γ

d− 1
− log2 γ

) d−1∑
l=1

|0⟩⟨l|

+ i
√
γ

√
1− γ

d− 1

(
log2 γ − log2

1− γ

d− 1

) d−1∑
k=1

|k⟩⟨0|

= iα (|0⟩⟨ϕ| − |ϕ⟩⟨0|) (31)
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with a state |ϕ⟩ =
∑d−1

i=1 |i⟩ /
√
d− 1 and some α ∈ R. An optimal Hamiltonian can thus be

chosen as

H =
i√
2
(|0⟩⟨ϕ| − |ϕ⟩⟨0|) . (32)

We will now focus explicitly on the single-qubit case. In this case, we will evaluate Cgen(H)

for any Hamiltonian H. In the following, we denote the elements of the density matrix with

ρkl, and similarly Hkl are elements of H. Moreover, ρ01 = |ρ01|eiα and similarly H01 =

|H01|eiβ . Using Eq. (20) we obtain

iTr (H[ρ, log2 ∆(ρ)]) = i
∑
k,l

Hlkρkl (log2 ρll − log2 ρkk) (33)

= i [H10ρ01 (log2 ρ11 − log2 ρ00)]

+ i [H01ρ10 (log2 ρ00 − log2 ρ11)]

= i [H10ρ01 −H01ρ10] log2
ρ11
ρ00

= i |H10| |ρ01|
[
ei(α−β) − e−i(α−β)

]
log2

ρ11
ρ00

= −2 |H10| |ρ01| sin(α− β) log2
ρ11
ρ00

.

Our goal now is to maximize this expression over all α, |ρ01|, ρ00 and ρ11, taking into account

that ρ is a density matrix of a single qubit. Maximizing over α is straightforward, an optimal

choice is α = β − π/2. We thus arrive at

Cgen(H) = max
ρij

2 |H10| |ρ01| log2
ρ11
ρ00

. (34)

For any qubit density matrix it holds that |ρ01| ≤
√
ρ00ρ11 with equality on pure states. With

this we can perform the maximization over |ρ01|, leading to

Cgen(H) = max
ρij

2 |H10|
√
ρ00ρ11 log2

ρ11
ρ00

. (35)

This also means that an optimal state can be chosen to be pure. In the last step we recall

that ρ11 = 1− ρ00, such that

Cgen(H) = max
ρ00

2 |H10|
√
ρ00(1− ρ00) log2

1− ρ00
ρ00

. (36)

This maximization can be performed numerically, leading to ρ00 ≈ 0.083.

We note that analogous results have been previously reported in entanglement theory. In

particular, optimal entanglement generation for two-qubit Hamiltonians has been considered

in [24], and optimal states for entanglement generation without ancillas have been derived.

Optimal entanglement generation with Hamiltonians of bounded operator norm have been

investigated in [25].

3 Conclusions

In conclusion, our investigation offers an in-depth exploration of the coherence generating

capacity inherent to Hamiltonians, showcasing a methodology that enables the assessment of
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the maximum coherence derivative achievable in quantum systems of any dimension, governed

by Hamiltonians with bounded Hilbert-Schmidt norms. Specifically, for qubit systems, we

have achieved a comprehensive resolution of this problem for any Hamiltonian, identifying

states that maximize the rate of change in the relative entropy of coherence.

This inquiry opens the door to several compelling questions for future research. A primary

area of interest is the extent of coherence enhancement attainable through specific Hamiltoni-

ans in systems of dimensions greater than those of qubits. Although our approach provides a

novel way to frame this question, the feasibility of solving this maximization problem analyti-

cally, or possibly through semidefinite programming, remains to be determined. Additionally,

the potential applicability of our techniques to other quantum resource theories, especially

the resource theory of entanglement, poses an intriguing prospect. Considering the parallels

between the resource theories of coherence and entanglement, there is a promising possibility

that our strategies could uncover optimal methods for increasing entanglement in a system

using certain Hamiltonian classes.
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Appendix A Proof of Eq. (5)

Here we will prove that the time derivative of the von Neumann entropy can be written

as
d

dt
S(ρt) = −Tr [ρ̇t log2 ρt] . (A.1)

First, we decompose the density matrix ρt in its eigenbasis ρt =
∑

i λi |ψi⟩⟨ψi|, where λi and
|ψi⟩ are time-dependent eigenvalues and eigenstates, respectively. It follows that:

d

dt
(ρt log2 ρt) =

∑
i

d

dt

(
λi

lnλi
ln 2

)
|ψi⟩⟨ψi|+

∑
i

(λi log2 λi)
d

dt
|ψi⟩⟨ψi| (A.2)

=
∑
i

(
λ̇i

lnλi
ln 2

+
λ̇i
ln 2

)
|ψi⟩⟨ψi|+

∑
i

(λi log2 λi)
[

˙|ψi⟩⟨ψi|+ |ψi⟩ ˙⟨ψi|
]
.

This means that the derivative of the von Neumann entropy can be written as

d

dt
S(ρt) = −Tr

[
d

dt
(ρt log2 ρt)

]
= −

∑
i

(
λ̇i

lnλi
ln 2

+
λ̇i
ln 2

)
, (A.3)
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where we have used the fact that

Tr
[

˙|ψi⟩⟨ψi|+ |ψi⟩ ˙⟨ψi|
]
= Tr

[
d

dt
(|ψi⟩⟨ψi|)

]
=

d

dt
Tr [|ψi⟩⟨ψi|] = 0. (A.4)

Noting that
∑

i λ̇i =
d
dt

∑
i λi = 0, we obtain

d

dt
S(ρt) = −

∑
i

λ̇i log2 λi. (A.5)

In the next step, we write ρ̇ log2 ρ as follows:

ρ̇ log2 ρ =
∑
i,j

(
λ̇i |ψi⟩⟨ψi|+ λi

d

dt
|ψi⟩⟨ψi|

)
log2 λj |ψj⟩⟨ψj | , (A.6)

which implies

Tr [ρ̇ log2 ρ] =
∑
i,j

(
λ̇i log2 λjTr [|ψi⟩⟨ψi|ψj⟩⟨ψj |] + λi log2 λjTr

[
d

dt
(|ψi⟩⟨ψi|) |ψj⟩⟨ψj |

])
(A.7)

=
∑
i

λ̇i log2 λi +
∑
i,j

λi log2 λjTr
[(

˙|ψi⟩⟨ψi|+ |ψi⟩ ˙⟨ψi|
)
|ψj⟩⟨ψj |

]
=
∑
i

λ̇i log2 λi +
∑
i

λi log2 λi

(
⟨ψi|ψ̇i⟩+ ⟨ψ̇i|ψi⟩

)
=
∑
i

λ̇i log2 λi.

This completes the proof.

Appendix B Proof of Eq. (9)

Let A be a Hermitian matrix, and B be a positive matrix. It holds that

Tr [A log2 ∆(B)] = Tr

[
A log2

(∑
i

|i⟩⟨i|B |i⟩⟨i|

)]
=
∑
i

Tr [A log2 (|i⟩⟨i|B |i⟩⟨i|)]

=
∑
i,j

Tr [A |j⟩⟨j| log2 (|i⟩⟨i|B |i⟩⟨i|) |j⟩⟨j|]

=
∑
i,j

Tr [|j⟩⟨j|A |j⟩⟨j| log2 (|i⟩⟨i|B |i⟩⟨i|)]

= Tr

∑
j

|j⟩⟨j|A |j⟩⟨j| log2

(∑
i

|i⟩⟨i|B |i⟩⟨i|

)
= Tr [∆(A) log2 ∆(B)] . (B.1)

Appendix C Proof of Eq. (25)

Here we will show that the function

f(ρ) =
1

2

∑
i,j

ρiiρjj (log2 ρjj − log2 ρii)
2

(C.1)
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can also be written as

f(ρ) =
∑
i

ρii (− log2 ρii)
2 −

[∑
i

ρii (− log2 ρii)

]2
. (C.2)

This follows directly from the following equalities:

∑
i

ρii (− log2 ρii)
2 −

[∑
i

ρii (− log2 ρii)

]2
(C.3)

=
∑
i

ρii (log2 ρii)
2 −

∑
i

ρ2ii (log2 ρii)
2 −

∑
i̸=j

ρiiρjj log2 ρii log2 ρjj

=
∑
i

ρii (1− ρii) (log2 ρii)
2 −

∑
i ̸=j

ρiiρjj log2 ρii log2 ρjj

=
∑
i

ρii

∑
j ̸=i

ρjj

 (log2 ρii)
2 −

∑
i ̸=j

ρiiρjj log2 ρii log2 ρjj

=
∑
i ̸=j

ρiiρjj (log2 ρii)
2 −

∑
i ̸=j

ρiiρjj log2 ρii log2 ρjj

=
1

2

∑
i̸=j

ρiiρjj (log2 ρii)
2
+

1

2

∑
i̸=j

ρiiρjj (log2 ρjj)
2 −

∑
i̸=j

ρiiρjj log2 ρii log2 ρjj

=
1

2

∑
i̸=j

ρiiρjj

[
(log2 ρii)

2
+ (log2 ρjj)

2 − 2 log2 ρii log2 ρjj

]
=

1

2

∑
i̸=j

ρiiρjj (log2 ρii − log2 ρii)
2
=

1

2

∑
i,j

ρiiρjj (log2 ρii − log2 ρii)
2
.

Here, we have used the fact that
∑

j ̸=i ρjj = 1− ρii.
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