
Quantum Information and Computation, Vol. 24, No. 7&8 (2024) 0609–0642
c© Rinton Press

QUANTUM SOFTWARE DEVELOPMENT: A SURVEY

LUIS JIMNEZ-NAVAJAS

Faculty of Social Sciences & IT, University of Castilla-La Mancha

Talavera de la Reina, Spain

FABIAN BHLER

Institute of Architecture of Application Systems, University of Stuttgart

Stuttgart, Germany

FRANK LEYMANN

Institute of Architecture of Application Systems, University of Stuttgart

Stuttgart, Germany

RICARDO PREZ-CASTILLOa

Faculty of Social Sciences & IT, University of Castilla-La Mancha
Talavera de la Reina, Spain

MARIO PIATTINI

Escuela Superior de Informtica, University of Castilla-La Mancha

Ciudad Real, Spain

DANIEL VIETZ

Institute of Architecture of Application Systems, University of Stuttgart
Stuttgart, Germany

Received February 6, 2024

Revised July 15, 2024

aCorresponding author

609

610 Quantum software development: a survey

Over the last few years, quantum computing has been growing at an exponential pace.

Every day, new techniques, frameworks, modeling, and programming languages are

emerging that aim to facilitate the development of quantum software, which is key to
achieving the promising applications of quantum computing. However, which of these

are actively used and the degree of satisfaction of researchers and developers regarding

these quantum software frameworks and languages is not known. To address this, we
conducted a survey to characterize which modeling tools and which quantum program-

ming languages are used during the quantum software lifecycle. Researchers in academia

and industry developers were surveyed, and a total of 57 responses were collected. The
results indicate that during quantum software development, some models and diagrams

are used to guide development. In addition, the survey results show what quantum pro-
gramming languages are the most used alongside the classical programming languages

employed to build hybrid programs, among other important insights. The implications

of this survey are: (i) to find out what the current trends are within quantum software
development and (ii) to find out what the needs are of quantum software developers with

respect to current modeling and programming languages and tools.

Keywords: Quantum Computing, Survey, Hybrid Information Systems, Quantum Soft-

ware Development

1 Introduction

Quantum computing is expected to make an impact on systems (and thus society) when its

associated technology is sufficiently mature [1]. Technology giants such as Amazon, IBM,

Google, and Microsoft are investing a lot of effort in evolving this new paradigm, whether by

creating new languages, researching the creation of better quantum computers, or enabling

quantum services. This growing interest in quantum computing and its potential impact in

various fields has led to the emergence of a vibrant quantum ecosystem consisting of start-ups,

research laboratories, and consortiums.

To support quantum software development, a growing number of frameworks and domain-

specific languages can be found. For example, there are programming languages, software

development kits, modeling languages, diagrams, and orchestration tools, among many others.

Both industry and academia are working (with promising results) to extend the technological

landscape available for quantum software development. This includes adaptations of modeling

languages [2, 3, 4], the definition of lifecycle development processes [5], and orchestration of

quantum software [6].

Although there are already several systematic studies and surveys that depict different

aspects of the actual state of the art of quantum software development, such as the quantum

programming languages used [7, 8] or testing approaches followed [9], none of them investigates

the utilization of modeling languages during the quantum software development lifecycle.

Further, it is unclear whether developers are satisfied with them. Also, there are no studies

describing the current state of quantum software development distinguishing between the

implementation and operation phases. This implies that it is not known whether the proposed

tools are useful for quantum software developers in any phase. Furthermore, information

about which modeling techniques are used the most and the least, as well as the satisfaction

with them, is crucial for researchers in quantum software engineering to create new techniques

or improve existing ones. Knowing what trends exist in quantum software implementation

would enable a better understanding of the context and situation of this new paradigm.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 611

To address this, we present a survey which gives new insights about modeling, implemen-

tation, and operation throughout the quantum software modeling lifecycle. The survey aims

to: (i) characterize the quantum software modeling process during the different phases of the

quantum software engineering (QSE) lifecycle [10, 11], (ii) illustrate the utilization of tools

such as programming languages, software development kits (SDKs), or frameworks during the

implementation phase of quantum software, and (iii) depict the use of such tools (program-

ming languages, SDKs, frameworks, etc.) during the operations phase. The study follows the

Goal-Question-Metric (GQM) approach [12] in order to conduct the survey in a systematic

way. The survey was sent to authors from academia and industry. A total of 57 responses

were collected. The responses obtained show that research in this new paradigm is latent in

both industry and academia. The results obtained draw several insights. Firstly, different

software modeling techniques are used during the development of quantum software where

flowcharts, informal sketches, and UML diagrams stand out. Secondly, for the implementa-

tion of quantum software, Qiskit and OpenQASM are the most used languages, accompanied

by Python as a classical programming language to create hybrid software. Finally, for the

operation of quantum software, the whole quantum software paradigm will need to mature.

The paper is structured as follows. Section 2 describes the background of this study.

Section 3 explains how the survey was designed and carried out. Section 4 shows an analysis

of the results obtained. Section 5 discusses the results obtained from this study and the

implications associated with them. Finally, Section 6 gives a conclusion and an outlook on

future work.

2 Background and Related Work

This section introduces the underlying concepts related to the conducted survey. Section 2.1

explains the foundations of quantum computing. Sections 2.2 and 2.3 provide a background

on quantum software and quantum software engineering. Then, Section 2.4 presents some

surveys related to the development of quantum software.

2.1 Quantum Computing

Originally, quantum computing was proposed as an alternative to classical computers to

simulate nature in a more accurate way [13]. Nature at subatomic levels behaves probabilis-

tically (as it follows the laws of quantum mechanics). However, classical computers work in

a deterministic way, making the simulation of nature on these computers inviable. Quantum

computing is a new paradigm of computing that exploits the principles of quantum mechanics

to achieve better performance than classical computing in certain scenarios.

There are several ways of working with quantum computers, including gate-based, adi-

abatic, and topological quantum computing, among others, with the most frequently used

being gate-based quantum computing [14]. Gate-based quantum computing operates simi-

larly to the assembly language of traditional computers, where the instructions in the source

code directly correspond to hardware-level instructions. However, in quantum computing,

the quantum gates influence qubits by modifying their properties, such as applying superpo-

sition, entanglement, or altering their amplitude. Quantum circuits are commonly used to

develop programs in this paradigm. In visual representations of quantum circuits, qubits are

represented by horizontal lines and quantum gates are placed on these lines to change their

612 Quantum software development: a survey

state. The type of gate applied determines how the qubit’s state will be changed, e.g., the

Hadamard gate creates a superposition state.

Adiabatic quantum computing involves encoding the solution to a problem in the ground

state of a quantum system and then evolving the system slowly enough for it to remain

in its ground state. This approach leverages the principles of quantum mechanics to solve

optimization problems by finding the lowest energy configuration of the system.

2.2 Quantum Software

Similar to classical computing, there are many different programming languages and software

development kits available for quantum computing to choose from. For example, quantum

programming languages such as Q# (Microsoft) [15] or OpenQASM (IBM) [16] among others.

In addition, it is also possible to import libraries for programming quantum software like Qiskit

(IBM) [17], Cirq (Google) [18], or Strawberry Fields (Xanadu) [19]. The quantum programs

can then be simulated locally using a quantum computing simulator or executed via a provider

that allows running quantum programs on real quantum computers or simulators through an

application programming interface (API), e.g., QuantumPath (aQuantum) [20] or Braket

(Amazon) [21].

2.3 Quantum Software Engineering

Due to the emerging need to produce quantum software in an industrial controlled manner,

the Talavera Manifesto was proposed [25]. This manifesto advocates the need for the creation

of QSE, which is indispensable for the proper development of quantum computing. QSE

claims to adapt the existing software engineering processes, methods, techniques, practices,

and principles for the development of quantum software (or it may imply creating new ones)

[26].

Many proposals have been published related to the adaptation of existing software engi-

neering processes to the field of quantum computing. Regarding adapted modeling languages,

some examples are the Unified Modeling Language (UML) [2, 3], Business Process Model and

Notation (BPMN) [27], and Knowledge Discovery Metamodel (KDM) [28]. Furthermore,

there have been proposals for processes for quantum software engineering like the quantum

information technology governance system [29] and even a quantum software development

lifecycle [10, 11].

2.4 Surveys Related to Quantum Software

Several surveys related to quantum software can be found both in the literature and in indus-

trial projects. From academia, surveys that inquire into various aspects of quantum software

development can be found. For example, Li et al. [30] investigate the challenges of quantum

programming from a developer’s perspective, examining technical Q&A forums where devel-

opers ask QSE-related questions and GitHub issue reports where developers raise QSE-related

issues. Khan et al. [31] present a survey on the suitability of agile practices in quantum soft-

ware development, conducting interviews with various software practitioners. De Stefano et

al. [32] present an extension of the work of Li et al. [30], including a mining software reposi-

tory analysis and a survey study in order to assess how far quantum software engineering is

from effectively supporting developers in practice. Another interesting survey is presented in

[33], which provides a comprehensive analysis of the evolving needs within the quantum in-

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 613

dustry, highlighting the essential skills and educational requirements for future professionals,

thus contributing valuable insights for academia and industry stakeholders. However, this

survey does not specifically focus on quantum software development.

Industry and independent projects, surveys such as that from Zapata Computing [7] col-

lected insights on how far enterprises are in their adoption of quantum computing and the

challenges they face. Unitary Fundation [8] also published the results of their quantum open-

source survey, aiming to obtain a community-wide and industry-wide snapshot that is repre-

sentative of everyone who codes for and with quantum computing technologies. The quantum

computing vendor D-Wave also published the results of a survey with responses from early

quantum computing adopters in the United States and Europe [34]. Classiq, the vendor

behind the Quantum Algorithm Design platform, also conducted a survey to highlight the

interest and future investment in quantum computing in industry sectors [35].

Currently, there are no surveys that address the use of quantum software modeling lan-

guages and diagrams. Furthermore, the studies presented above also did not inquire about

the use of different tools, programming languages, or frameworks depending on the stage of

quantum software development.

3 Survey Design

This section describes the survey’s design. The rationale and objectives of the survey are

discussed in Section 3.1. Section 3.2 explains the Goal-Question-Metric (GQM) approach

used to conduct the survey. Sections 3.3, 3.4, and 3.5 detail the instrumentation, experimental

procedure, and data collection methods, respectively.

3.1 Rationale and Objectives

As stated before, currently there are no studies that address the use of modeling tools or

languages through the process of quantum software development. Conducting a survey in

this regard may help with the characterization of the use of these tools. This survey could

also be helpful to help the scientific community to consider possible development processes

and supporting tools. This study has two distinct objectives. Firstly, it aims to showcase the

current trends in quantum software development. Secondly, it seeks to identify the specific

modeling tools being used and assess possible shortcomings. Therefore, the survey contributes

to the characterization of the utilization of these tools and understanding the shortcomings of

the existing. In addition, it assists the scientific community in exploring potential development

processes and improving supporting tools.

3.2 Goal-Question-Metric Approach

This survey has been conducted by following the Goal-Question-Metric (GQM) approach

[12] which allows to develop the survey in a purposeful and systematic way. This approach

consists of three levels. First, the conceptual level, where one or several goals are defined,

each from various points of view, relative to a particular environment (cf. Section 3.2.1).

Second, the operational level, in which a set of issues is described for characterizing the

way the assessment/achievement of a specific goal is going to be performed based on some

characterizing model (cf. Section 3.2.2). Third, the quantitative level, where a data set is

defined for every question in order to answer it quantitatively. These metrics can answer

614 Quantum software development: a survey

several questions (cf. Section 3.2.3). As a result, it provides a framework for interpreting the

collected data with respect to the stated goals. The main reason for embracing the GQM

approach for the survey design is that GQM allows one to characterize the current state

of development in a systematic and straightforward way. This study does not present any

hypotheses about the state of quantum software development. This is because no scientific

studies, at the moment, allow to make such hypotheses. However, thanks to this study, it may

be possible to hypothesize about the progress of the quantum software development process.

3.2.1 Goals

On the conceptual level, three goals have been defined following the template of Basili et al.

[12]. The GQM goal template can be used to articulate the purpose of any study [36]. As

this research aims to understand the overall context of quantum software development from

a software engineering perspective, three main goals have been set.

The first goal is to analyze the quantum software modeling process with respect to the

modeling frameworks, standards, and tools used. Therefore, the purpose of this goal is to

characterize the use of these elements. So, its definition following the GQM template is as

follows:

Goal 1: Analyze quantum software modeling with the purpose of characterizing with
respect to the employment of modeling frameworks/standards/tools from the point
of view of quantum software engineers in the context of institutions and companies
which develop quantum software.

The second goal consists of characterizing what SDKs, tools, compilers, and languages are

used during the implementation of quantum software. With this goal, the purpose is to figure

out what current trends exist (if any), such as the most used languages or what combination

of classical and quantum languages is more widely used, among others. So, its definition

following the GQM template is as follows:

Goal 2: Analyze quantum software implementation with the purpose of character-
izing with respect to used SDK, Tools, Compilers, languages from the point of view
of quantum software engineers in the context of institutions and companies which
develop quantum software.

Finally, the third goal concerns the analysis of quantum software operation to characterize

which SDKs, tools, compilers, languages are used during the phase of quantum software

operation. This distinguishes operations such as execution, integration, orchestration from

the coding tasks (second goal). This achieves greater precision when studying the kind of

tools that are used during quantum software development. So, its definition following the

GQM template is as follows:

Goal 3: Analyze quantum software operation with the purpose of characterizing
with respect to used SDK, Tools, Compilers, languages from the point of view of
quantum software engineers in the context of institutions and companies which de-
velop quantum software.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 615

All these goals have been formulated from the point of view of quantum software engineers

in the context of institutions and companies that develop quantum software.

3.2.2 Questions

Following the GQM approach, for each of the defined goals (see Section 3.2.1) several questions

have been set. Table 1 shows the questions defined for each goal. Each question is associated

with an identifier that helps to trace it regarding goals and metrics. Table 1 presents the

research questions defined for each goal. Each research question (RQ) has an associated

identifier to facilitate traceability.

Research questions defined for Goal 1 helps to find out if some modeling approaches exist

(and how they are used) during any phase of quantum software development. In addition, it

could be possible that existing modeling approaches do not cover all the needs of quantum

software engineers, so informal sketches may also be used to cover such modeling needs.

The research questions associated with Goal 2 (see Table 1) attempt to outline how the

implementation of quantum software is carried out. Questions have been raised about what

languages and tools are used to develop quantum software and whether classical languages ex-

ist to support quantum software programming. Furthermore, the testing of quantum software

is also evaluated in this goal.

Finally, research questions derived from Goal 3 (see Table 1) are those related to the

operation of quantum software. To characterize the operation of quantum software, those

questions concern the execution of quantum software and it is the respective orchestration (if

any).

Table 1. Questions established for each goal.

Goal ID Question

Goal 1
RQ 1.1 How is modeling used in any quantum software lifecycle phase?
RQ 1.2 How are informal sketches designed?
RQ 1.3 How do current modeling approaches satisfy the needs of quantum

software engineers?

Goal 2

RQ 2.1 Why is quantum computing software implemented nowadays and
from who?

RQ 2.2 How is quantum software developed?
RQ 2.3 How is hybrid software composed?
RQ 2.4 What tools are used to implement quantum software?

Goal 3
RQ 3.1 How are quantum programs executed?
RQ 3.2 How are workflow technologies used to orchestrate QC applications?
RQ 3.3 How are language converters used to develop and execute quantum

software?

Some of the questions involved the use of certain tools during the quantum software

development lifecycle. The definition followed is from Weder et al. [5], and the process is

defined within eight phases:

• Requirement analysis. The different interested stakeholders identify their require-

ments (both functional and non-functional).

616 Quantum software development: a survey

• Architecture and design. The architecture is conceptualized by using both classical

and quantum parts (previously split) and specifying corresponding software compo-

nents with their functionality and interfaces. Then, the architecture is refined with the

internals of the different software components.

• Implementation. The quantum application is implemented based on the require-

ments and design from the previous phases. Thereby, the implementation includes the

development of the different constituting software artifacts.

• Testing. After the implementation, the quantum application is tested to verify the

intended behavior according to the specified requirements before delivering it to the

users.

• Deployment. During the deployment phase, everything is prepared to enable the

execution of the quantum application. Thus, the execution environment for the classical

programs is set up. Similarly, also the quantum programs and the workflows must be

deployed.

• Observability. The quantum application, as well as its execution environment, are

monitored. Thereby, data is collected for observing the current state of a running

quantum application and storing the data in the long term to enable its analysis.

• Analysis. In the last phase of the lifecycle, the collected data from the observability

phase is analyzed. The goals of this phase are to find bugs that must be fixed or possible

improvements for the quantum application.

3.2.3 Metrics

Following the GQM process, for each defined question a set of metrics has been established

that will help to answer the defined questions to consequently achieve the goals. These metrics

will then be adapted to the questions included in the questionnaire.

The defined metrics can be seen in the Appendix in Tables A.1, A.2, and A.3 for the

respective goals. Possible answers that the participants have are indicated within brackets

next to each metric, with multiple options separated by semicolons. Most of the questions are

close ended, although the possibility has been left for the user to write his/her own answer

for those questions with the option ”other”. Those metrics with two asterisks have multi-

choice answers, i.e., participants are able to choose several options to answer the question.

All questions have the option of not being answered, as the option ”I don’t know/I’d rather

not answer” is provided.

3.3 Instrumentation

To carry out this study, three instruments have been used: (a) a questionnaire to collect

information; (b) a survey web application; (c) scientific, digital libraries to get potential

respondents from the academia; and (d) a Python script for gathering potential respondents

from the industry.

Regarding the questionnaire, it was made up of a total of 42 questions. Although the

total number of metrics is 37, 8 additional questions were added to adapt the metrics to a

questionnaire-type format and to allow respondents to send us feedback.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 617

A web-based survey was created and implemented by using the platform SurveySparrow

[37]. This platform was chosen because: (i) it has integration with other data analysis tools;

and (ii) it has a user interface that makes the definition of the questionnaire easy and allows

defining conditional branching for interrelated questions. Formal requests for participations

were carried out by email, including the link to the survey questionnaire. On 13th December

2022, the survey was sent to the researchers and quantum software developers of the aQuantum

team [38] as well as to the network of researchers who endorsed the Talavera’s Manifesto

[25]. The next day, the survey was sent to users who had published research papers related

to quantum software at quantum computing conferences or conferences that are co-located

with quantum workshops (including several editions). These conferences were International

Conference on Software Engineering (ICSE) [39], IEEE International Conference on Quantum

Computing (QCE) [40] and the International Conference on the Quality of Information and

Communications Technology (QUATIC) [41]. To obtain their contact details, the contact

email address provided by the authors in their research papers was collected. A total of 139

authors were obtained, of which 36 replied. Finally, on January 3rd, the script for gathering

users mentioned previously was employed. A total of 408 contacts were collected, of which

20 more users responded to the survey. On January 31st, the survey closed. This gives us a

survey response rate of 10.23%.

In addition to the previous method for obtaining potential respondents, a Python script

was developed to obtain users who have developed quantum software in the industry. To

do this the GitHub API [42] was employed to retrieve the developers from repositories that

contain code that has imported a quantum programming library or either code developed in

a quantum programming language (Q#, OpenQASM, Qiskit, Cirq, Silq, Pytket, Pennylane,

Forest SDK, DWave-Ocean, Alibaba, Braket, QCL, QML and Strawberry Fields). The script

to get the repositories’ owners can be found in [43]. To search for these users, two differ-

ent filters have been used, depending on the language to be sought, but both searches by

repositories were done using the ”search repositories” query.

To search for developers who have developed quantum software using a library, the filter

employed consists of retrieving all repositories that contain the name of such quantum library

in the ”README” file and contain Python code (since almost all quantum libraries are

implemented in Python). So, to find all users who have developed code in Qiskit with this

search method, the filter would be ”in:readme qiskit language:python”. This method was used

because it is not possible to search for code by filtering by the libraries used. However, to find

all developers who have used a quantum programming language, all repositories containing

the desired programming language were searched using the ”language” filter as GitHub is able

to filter by the programming language. For example, searching repositories with source code

developed in Microsoft’s Q# language, the filter is ”language:Q#” From all the repositories

obtained, those with no more than 1 commit and those with no available mail were removed.

Once this was done and having queried the GitHub API, the data was collected in a MongoDB

database.

Fig. 1 shows the results of the number of contacts obtained following this method and

the percentage they represent of a total of 553 emails collected. None of these emails was

duplicated.

618 Quantum software development: a survey

Figure 1. Possible respondents obtained from GitHub.

3.4 EXPERIMENTAL PROCEDURE
Figure 2 shows the experimental procedure followed. The authors prepared the questionnaire

from August to December 2022. During this time the six authors worked on survey design, i.e.,

defining the objectives, questions, and issues following the GQM approach. Throughout this

period, the formulation criteria for the inquiries were thoroughly deliberated and finalized with

the intention of stating questions that are concise, with no ambiguity, and easy to comprehend.

One author was responsible for technical tasks related to the definition of the questionnaire in the

survey web application, including creating and adding survey questions, conducting the survey,

and administering the system.

Once the questionnaire was ready, the diffusion of the questionnaire was conducted between

January and March 2023. Then, the responses obtained from the survey questionnaire were

collected, pre-processed and, finally, analyzed.

Figure 2. Experimental procedure followed.

198

103

47

40

35

35

30

23

21

8

2

1

0 50 100 150 200 250

Qiskit

QML

Q#

D-Wave Ocean

OpenQASM

Cirq

Braket AWS

Pennylane

Forest SDK

QCL

Strawberry Fields

Pytket

Possible respondents obtained from GitHub

Survey design

Researching of the
current state of

quantum software
Goals definition

Goals

Survey diffusion

Survey results analysis

Questions
definition

Metrics definition

Questions

Survey questionnaire
implementation

Metrics

Academia potential
respondents research

Industrial potential
respondents research

List of contacts from academia

List of contacts from industry Survey questionnaire
spreading

Survey questionnaire

Data collection

Responses

Data pre-
processing

Data analysis

Raw data Data processed

Fig. 1. Possible respondents obtained from GitHub.

3.4 Experimental Procedure

Fig. 2 shows the experimental procedure followed. The authors prepared the questionnaire

from August to December 2022. During this time, the six authors worked on survey design,

that is, defining the objectives, questions, and issues following the GQM approach. Through-

out this period, the formulation criteria for the inquiries were thoroughly deliberated and

finalized with the intention of stating questions that are concise, without ambiguity, and easy

to comprehend. One author was responsible for technical tasks related to the definition of the

questionnaire in the survey web application, including creating and adding survey questions,

conducting the survey, and administering the system.

Once the questionnaire was ready, it was distributed between January and March 2023.

Then, the responses obtained from the survey questionnaire were collected, pre-processed and,

finally, analyzed.

3.5 Data Collection

Using SurveySparrow as the platform for implementing the web-based survey enables moni-

toring of survey results, as well as exporting raw data in CSV format and spreadsheets. This

meant that every time someone responded to the survey, the spreadsheet is updated with new

data.

Depending on the type of question (single or multiple choice), the format of the answers

in the spreadsheet varies, but each row always represents one respondent. If the questions are

single choice (i.e., only one answer can be ticked), the respondent’s answer choice will appear

in the corresponding cell of the answer. For multiple choice questions a column is generated

for each possible answer.

Table 2 shows an example of the CSV output formatted. Each row represents the respon-

dents, and the columns represent the questions. In this example, a total of two respondents

and two questions can be found. In the ”single response” column (see Table 2) there is a

question where the respondents must answer ”What software components have you modeled?.

Respondent 1 stated that has modeled just quantum software and respondent 2 hybrid only.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 619

Survey design

Researching of the
current state of

quantum software
Goals definition

Goals

Survey diffusion

Survey results analysis

Questions
definition Metrics definition

Questions

Survey questionnaire
implementation

Metrics

Academia potential
respondents research

Industrial potential
respondents research

List of contacts from academia

List of contacts from industry Survey questionnaire
spreading

Survey questionnaire

Data collection

Responses

Data pre-
processing Data analysis

Raw data Data processed

Fig. 2. Experimental procedure followed.

The ”multiple response” column (see Table 2) asks ”What is the target sector of hybrid soft-

ware?”, but each column represents the possible answer options. In the case of the first

respondent, he only chose the ”Research” option, while the second respondent chose both the

”Research” and the ”IT” options.

Table 2. Example of the format of the CSV output.

Single response Multiple response
What software compo-
nents have you mod-
elled?

What is the target sec-
tor of hybrid software?
Research

What is the target sec-
tor of hybrid software?
IT

Respondent 1 Quantum only Research
Respondent 2 Hybrid only Research IT

3.6 Data Analyisis

As mentioned above, the purpose of this survey is to describe the current state of quantum

software development. For this reason, descriptive statistics have been used to analyze the

data from the answers obtained. This type of statistic allows to summarize and describe

the main features of the data collected. To visually represent the distribution of categorical

variables, bar charts generated with Microsoft Excel have been employed.

In addition to descriptive statistics and bar charts, contingency tables were also employed

to analyze the survey data. Contingency tables allow one to explore the relationship be-

tween two categorical variables. In this study, contingency tables were used to explore the

relationships between research questions and objectives. Finally, a correlation analysis has

620 Quantum software development: a survey

been accomplished to explore the linear relationship between variables with Pythons library

dython, version 0.7.1 [44]. To measure the strength and direction of the relationship between

variables, the Pearson correlation coefficient has been used.

4 Results Analysis

The following sections will explain everything related to the results obtained from the survey.

Section 4.1 gives a brief description of the profile of the respondents. Sections 4.2 to 4.4

shows the results that help to complete Goal 1 to Goal 3. Section 4.5 presents insights by

analyzing various goals in combination. Section 4.6 provides a correlation study between

answers. Finally, Section 4.7 addresses the validation of the collected data.

4.1 Respondents Profile

First of all, the respondents were asked questions to find out about the organization where

they develop quantum code, in order to better establish a context. As mentioned above, a total

of 56 people responded to the survey, where 47 of them do develop quantum software. Fig.

3 shows the results. The majority, 20 respondents, work in ”micro” (43%), 15 in ”medium”

sized organizations (32%), 2 in medium-large (4%) and 10 in large organizations (21%). The

percentages shown are calculated on the total number of answers obtained for each question.

This is the same for both multi- and single-choice questions.

4.4 describes the results to achieve goal 3. Section 4.7 addresses the validation of the data

collected.

4.1 RESPONDENTS PROFILE
First of all, the respondents were asked questions to find out about the organization where

they develop quantum code, in order to better establish a context. As mentioned above, a total of

56 people responded to the survey, where 47 of them do develop quantum software. Figure 3

shows the results. The majority, 20 respondents, work in "micro" (43%), 15 in "medium" sized

organizations (32%), 2 in medium-large (4%) and 10 in large organizations (21%). The

percentages shown are calculated on the total number of answers obtained for each question. This

is the same for both multi and single-choice questions.

Figure 3. Size of the organization of the respondents.

In addition, all of the respondents were asked which sectors the hybrid software they

developed was aimed at, so multiple options could be chosen. The most chosen options are

research (33;38%), the IT sector (18;21%) and education (9;10%). The first number in the tuples

indicates the number of times an option has been chosen and the second number the percentage

that it represents over the total number of responses of the question.

20

15

2

10

0 5 10 15 20 25

Micro (less or equal than 10
employees)

Medium (less or equal than 50
employees)

Medium-Large (less or equal than
250 employees)

Large (more than 250 employees)

Size of the organization

33

18

9

6

4

4

4

2

2

2

2

0

0

0 5 10 15 20 25 30 35

Research

IT

Education

Logistic

Chemistry

Financial services

Health

Energy

Government

Telecommunication

Other

Commerce

Consumer goods

Tagert sector of the hybrid software

Fig. 3. Size of the organization of the respondents.

In addition, all respondents were asked which sectors the hybrid software they developed

was aimed at, so multiple options could be chosen. The most chosen options are research (33;

38%), the IT sector (18; 21%) and education (9; 10%) (see Fig. 4). The first number in the

tuples indicates the number of times an option has been chosen, and the second number the

percentage that it represents over the total number of responses of the question.

Respondents were asked about the possible motivations behind developing quantum soft-

ware (see Fig. 5). The vast majority (46; 53%) have in common the research as one of the

organizations motivation. Then, to be ready for the future (20; 23%), better performance

(15; 17%) and quality of the results (8; 9%).

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 621

4.4 describes the results to achieve goal 3. Section 4.7 addresses the validation of the data

collected.

4.1 RESPONDENTS PROFILE
First of all, the respondents were asked questions to find out about the organization where

they develop quantum code, in order to better establish a context. As mentioned above, a total of

56 people responded to the survey, where 47 of them do develop quantum software. Figure 3

shows the results. The majority, 20 respondents, work in "micro" (43%), 15 in "medium" sized

organizations (32%), 2 in medium-large (4%) and 10 in large organizations (21%). The

percentages shown are calculated on the total number of answers obtained for each question. This

is the same for both multi and single-choice questions.

Figure 3. Size of the organization of the respondents.

In addition, all of the respondents were asked which sectors the hybrid software they

developed was aimed at, so multiple options could be chosen. The most chosen options are

research (33;38%), the IT sector (18;21%) and education (9;10%). The first number in the tuples

indicates the number of times an option has been chosen and the second number the percentage

that it represents over the total number of responses of the question.

20

15

2

10

0 5 10 15 20 25

Micro (less or equal than 10
employees)

Medium (less or equal than 50
employees)

Medium-Large (less or equal than
250 employees)

Large (more than 250 employees)

Size of the organization

33

18

9

6

4

4

4

2

2

2

2

0

0

0 5 10 15 20 25 30 35

Research

IT

Education

Logistic

Chemistry

Financial services

Health

Energy

Government

Telecommunication

Other

Commerce

Consumer goods

Tagert sector of the hybrid software

Fig. 4. Target sector of hybrid software.

Figure 4. Target sector of hybrid software.

Respondents were asked about the possible motivations behind developing quantum

software (see Figure 5). The vast majority (46;53%) have in common the research as one of the

organization’s motivation. Then, to be future ready (20;23%), better performance (15;17%) and

quality of the results (8;9%).

Figure 5. Organization's motivation regarding the development of quantum software.

It can be concluded that the profile of the respondents to the survey is closely linked to the

research. These respondents generally work in organizations with few employees. Furthermore,

quantum software development is mainly research and IT-oriented, which can be reflected in the

motivations of the organizations where the respondents work.

4.2 GOAL 1: QUANTUM SOFTWARE MODELING
To characterize quantum software modeling with respect to modeling frameworks,

standards, or tools the survey asked what software components to have been modelled during the

development of hybrid quantum software. Figure 6 shows the results of this question, where most

of the respondents answered both (33;69%). The second most chosen option is none (8;17%),

then only classical (6; 13%) and last only the quantum components (1;2%).

Figure 6. Software components modeled.

46

20

15

8

2

2

0 10 20 30 40 50

Research

To be future ready

Better performance

Quality of results

Costs

Education

Organization's motivation regarding the development of
quantum software

33

8
6

1

0

5

10

15

20

25

30

35

Both None Classical only Quantum only

RQ1.1 - Software components modelled

Fig. 5. Organization’s motivation regarding the development of quantum software.

It can be concluded that the profile of the respondents to the survey is closely linked

to the research. These respondents generally work in organizations with few employees.

Furthermore, quantum software development is mainly research- and IT-oriented, which can

be reflected in the motivations of the organizations where the respondents work.

4.2 Goal 1: Quantum Software Modeling

To characterize quantum software modeling with respect to modeling frameworks, standards,

or tools the survey asked what software components to have been modelled during the devel-

opment of hybrid quantum software. Fig. 6 shows the results of this question, where most of

the respondents answered both (33; 69%). The second most chosen option is none (8; 17%),

then only classical (6; 13%) and last only the quantum components (1; 2%).

Now, people who have modelled any type of component including quantum components

622 Quantum software development: a survey

(those respondents who answered either quantum-only or both classical-quantum in the pre-

vious question) have been asked what purposes they have used models for. Fig. 7 depicts

the results of this questions, where the main use of models has been the conceptualization

(31; 30%), documentation (24; 24%), and generation of code (20; 20%). The respondent who

answered ’Other’ stated that they use models for teaching.

Figure 4. Target sector of hybrid software.

Respondents were asked about the possible motivations behind developing quantum

software (see Figure 5). The vast majority (46;53%) have in common the research as one of the

organization’s motivation. Then, to be future ready (20;23%), better performance (15;17%) and

quality of the results (8;9%).

Figure 5. Organization's motivation regarding the development of quantum software.

It can be concluded that the profile of the respondents to the survey is closely linked to the

research. These respondents generally work in organizations with few employees. Furthermore,

quantum software development is mainly research and IT-oriented, which can be reflected in the

motivations of the organizations where the respondents work.

4.2 GOAL 1: QUANTUM SOFTWARE MODELING
To characterize quantum software modeling with respect to modeling frameworks,

standards, or tools the survey asked what software components to have been modelled during the

development of hybrid quantum software. Figure 6 shows the results of this question, where most

of the respondents answered both (33;69%). The second most chosen option is none (8;17%),

then only classical (6; 13%) and last only the quantum components (1;2%).

Figure 6. Software components modeled.

46

20

15

8

2

2

0 10 20 30 40 50

Research

To be future ready

Better performance

Quality of results

Costs

Education

Organization's motivation regarding the development of
quantum software

33

8
6

1

0

5

10

15

20

25

30

35

Both None Classical only Quantum only

RQ1.1 - Software components modelled

Fig. 6. RQ1.1 - Software components modeled.

Now, people who have modelled any type of component including quantum components

(those respondents who answered either quantum-only or both classical-quantum in the previous

question) have been asked what purposes they have used models for. Figure 7 depicts the results

of this questions, where the main use of models has been the conceptualization (31;30%),

documentation (24;24%), and generation of code (20;20%). The respondent who answered

“Other” stated that uses models for teaching.

Figure 7. Use of models.

Among the modeling languages or diagram types used during the development of quantum

software (see Figure 8), flowcharts are the most used (23;21%), together with informal sketches

(19;17%). Within the modeling languages, UML stands out (16;14%). Those who chose the

"other" option reported that the diagram types they use are "Circuit diagrams", "LaTeX”, “ZX

Calculus” and Pennylane.

Figure 8. Modeling languages or diagram types used during the development of quantum software.

31

24

20

13

13

1

0 5 10 15 20 25 30 35

Conceptualization/Drafting

Documentation (user
reference/developer reference)

Generation of code

Communication with
manager/customer/other teams

Model-driven engineering

Other

RQ1.1 - Use of models

23

19

16

13

11

9

8

5

4

3

1

0

0 5 10 15 20 25

Flowcharts

Informal sketches

UML

Data flow

State machine

Entity Relation

BPMN

TOSCA

Other

Petri-Nets

SYS-ML

Archimate

RQ1.1 - Modeling languages or diagram types used during the
development of quantum software

Fig. 7. RQ1.1 - Use of models.

Among the modeling languages or diagram types used during the development of quantum

software (see Fig. 8), flowcharts are the most widely used (23; 21%), together with informal

sketches (19; 17%). Within the modeling languages, UML stands out (16; 14%). Those who

chose the ”other” option reported that the diagram types they use are ”Circuit diagrams”,

”LaTeX, ZX Calculus and Pennylane.

Fig. 9 depicts the results of use, creation and updating within the lifecycle phases. Within

the phases of requirement analysis, architecture and design, and analysis, the creation of mod-

els covers the most. Then, the use of models tends to occur in the deployment, observability,

implementation and testing phases. Finally, the updating of models is more common in the

testing, analysis and observability phases.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 623

Now, people who have modelled any type of component including quantum components

(those respondents who answered either quantum-only or both classical-quantum in the previous

question) have been asked what purposes they have used models for. Figure 7 depicts the results

of this questions, where the main use of models has been the conceptualization (31;30%),

documentation (24;24%), and generation of code (20;20%). The respondent who answered

“Other” stated that uses models for teaching.

Figure 7. Use of models.

Among the modeling languages or diagram types used during the development of quantum

software (see Figure 8), flowcharts are the most used (23;21%), together with informal sketches

(19;17%). Within the modeling languages, UML stands out (16;14%). Those who chose the

"other" option reported that the diagram types they use are "Circuit diagrams", "LaTeX”, “ZX

Calculus” and Pennylane.

Figure 8. Modeling languages or diagram types used during the development of quantum software.

31

24

20

13

13

1

0 5 10 15 20 25 30 35

Conceptualization/Drafting

Documentation (user
reference/developer reference)

Generation of code

Communication with
manager/customer/other teams

Model-driven engineering

Other

RQ1.1 - Use of models

23

19

16

13

11

9

8

5

4

3

1

0

0 5 10 15 20 25

Flowcharts

Informal sketches

UML

Data flow

State machine

Entity Relation

BPMN

TOSCA

Other

Petri-Nets

SYS-ML

Archimate

RQ1.1 - Modeling languages or diagram types used during the
development of quantum software

Fig. 8. RQ1.1 - Modeling languages or diagram types used during the development of quantum

software.

Figure 9 depicts the results of use, creation and updating within the lifecycle phases. Within

the phases of requirement analysis, architecture and design, and analysis the creation of models

covers the most. Then, the use of models tends to occur in the deployment, observability,

implementation and testing phases. Finally, the updating of models is more common in the testing,

analysis and observability phases.

Figure 9. Lifecycle phases where models have been used, created, or updated.

To find out how satisfied respondents are with the modeling languages used, a Likert scale

has been used, where they rate their satisfaction from 1 to 5, where 5 represents the highest

possible satisfaction and 1 the lowest. Instead of numbers, to represent the satisfaction degree

emojis were employed. Figure 10 illustrates the results of this question and the overall satisfaction

is positive. Most respondents have neutral satisfaction, i.e., with a score of 3 (16;44%). Fourteen

respondents rated their satisfaction with 4 (39%) and three have rated their experience with 5

(8%). One person has rated their satisfaction with 2 (3%) and two respondents with 1 (6%).

Figure 10. Satisfaction degree with the employed modeling languages.

27%

13%

17%

14%

25%

45%

50%

32%

50%

54%

43%

43%

38%

31%

41%

38%

29%

43%

33%

17%

19%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Analysis

Observability

Deployment

Testing

Implementation

Architecture & Design

Requirement Analysis

Created a model Used or referenced a model Updated a model

3

14

16

1

2

0 2 4 6 8 10 12 14 16 18

RQ1.3 - Satisfaction degree with the employed
modeling languages

RQ1.1 - Lifecycle phases where models have been used, created or updated

Fig. 9. RQ1.1 - Lifecycle phases where models have been used, created, or updated.

To find out how satisfied respondents are with the modeling languages used, a Likert

scale has been used, where they rate their satisfaction from 1 to 5, where 5 represents the

highest possible satisfaction and 1 the lowest. Instead of numbers, to represent the satisfaction

degree emojis were employed. Fig. 10 illustrates the results of this question and the overall

satisfaction is positive. Most respondents have neutral satisfaction, i.e., with a score of 3

(16; 44%). Fourteen respondents rated their satisfaction with 4 (39%) and three have rated

their experience with 5 (8%). One person has rated their satisfaction with 2 (3%) and two

respondents with 1 (6%).

624 Quantum software development: a survey

Those who have a neutral or negative satisfaction rating, i.e., have a satisfaction rating of

3 or less, were asked in which lifecycle phase they would like to have more modeling support.

Fig. 11 presents the results, where the architecture and design phase (12; 21%) is the phase

requiring the most modeling support together with the implementation (10; 17%) and testing

(9; 16%) phases.

Figure 9 depicts the results of use, creation and updating within the lifecycle phases. Within

the phases of requirement analysis, architecture and design, and analysis the creation of models

covers the most. Then, the use of models tends to occur in the deployment, observability,

implementation and testing phases. Finally, the updating of models is more common in the testing,

analysis and observability phases.

Figure 9. Lifecycle phases where models have been used, created, or updated.

To find out how satisfied respondents are with the modeling languages used, a Likert scale

has been used, where they rate their satisfaction from 1 to 5, where 5 represents the highest

possible satisfaction and 1 the lowest. Instead of numbers, to represent the satisfaction degree

emojis were employed. Figure 10 illustrates the results of this question and the overall satisfaction

is positive. Most respondents have neutral satisfaction, i.e., with a score of 3 (16;44%). Fourteen

respondents rated their satisfaction with 4 (39%) and three have rated their experience with 5

(8%). One person has rated their satisfaction with 2 (3%) and two respondents with 1 (6%).

Figure 10. Satisfaction degree with the employed modeling languages.

27%

13%

17%

14%

25%

45%

50%

32%

50%

54%

43%

43%

38%

31%

41%

38%

29%

43%

33%

17%

19%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Analysis

Observability

Deployment

Testing

Implementation

Architecture & Design

Requirement Analysis

Created a model Used or referenced a model Updated a model

3

14

16

1

2

0 2 4 6 8 10 12 14 16 18

RQ1.3 - Satisfaction degree with the employed
modeling languages

RQ1.1 - Lifecycle phases where models have been used, created or updated

Fig. 10. RQ1.3 - Satisfaction degree with the employed modeling languages.

Those who have a neutral or negative satisfaction rating, i.e., have a satisfaction rating of 3

or less, were asked in which lifecycle phase they would like to have more modeling support.

Figure 11 presents the results, where the architecture and design phase (12;21%) is the phase

requiring the most modeling support together with the implementation (10;17%) and testing

(9;16%) phases.

Figure 11. Lifecycle phase where more modeling support is desired.

The nineteen respondents who perceived a lack of modeling were asked for what purpose

they felt a lack of modeling. Figure 12 shows the results of the question. Both for modeling hybrid

software and quantum software the same lack of modeling was observed (8;47%). One respondent

stated not to perceive any lack of modeling and no one for modeling classical software. It

demonstrates that more modeling techniques are being demanded and while classical software

has enough modeling support, these tools might not help much with hybrid software modeling.

Figure 12. Purposes where a lack of modeling is perceived.

The responses to the degree of satisfaction with the modeling languages used have been

combined with the programming languages used. This helps to understand how confident

quantum software developers feel regarding the modeling languages used. To accomplish these,

a contingency table has been built based on the results obtained from the previous questions.

Figure 13 depicts the results obtained sorted by the number of times the modeling tool has been

chosen. The modeling language BPMN was the highest-rated modeling language next to TOSCA.

8

12

10

9

5

5

7

0 2 4 6 8 10 12 14

Requirement Analysis

Architecture & Design

Implementation

Testing

Deployment

Observability

Analysis

8

8

0

1

Modeling hybrid software

Modeling quantum software

Modeling classical software

I haven't perceived any kind of lack

0 2 4 6 8 10

RQ1.3 - Purposes where a lack of modeling is perceived

RQ1.4 - Lifecycle phase where more modeling support is desired

Fig. 11. RQ1.4 - Lifecycle phase where more modeling support is desired.

The nineteen respondents who perceived a lack of modeling were asked for what purpose

they felt a lack of modeling. Fig. 12 shows the results of the question. For both hybrid

software modeling and quantum software, the same lack of modeling was observed (8; 47%).

One respondent stated not to perceive any lack of modeling and no one for modeling classical

software. It demonstrates that more modeling techniques are being demanded and while

classical software has enough modeling support, these tools might not help much with hybrid

software modeling.

The responses to the degree of satisfaction with the modeling languages used have been

combined with the programming languages used. This helps to understand how confident

quantum software developers feel regarding the modeling languages used. To accomplish

these objectives, a contingency table has been built based on the results obtained from the

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 625

previous questions. Fig. 13 shows the results obtained sorted by the number of times the

modeling tool has been chosen. The BPMN modeling language was the highest rated modeling

language, along with TOSCA. Although these languages are not the most widely used, those

are the best-rated. The lowest rated are ArchiMate, SYS-ML and State machine diagrams.

Those who have a neutral or negative satisfaction rating, i.e., have a satisfaction rating of 3

or less, were asked in which lifecycle phase they would like to have more modeling support.

Figure 11 presents the results, where the architecture and design phase (12;21%) is the phase

requiring the most modeling support together with the implementation (10;17%) and testing

(9;16%) phases.

Figure 11. Lifecycle phase where more modeling support is desired.

The nineteen respondents who perceived a lack of modeling were asked for what purpose

they felt a lack of modeling. Figure 12 shows the results of the question. Both for modeling hybrid

software and quantum software the same lack of modeling was observed (8;47%). One respondent

stated not to perceive any lack of modeling and no one for modeling classical software. It

demonstrates that more modeling techniques are being demanded and while classical software

has enough modeling support, these tools might not help much with hybrid software modeling.

Figure 12. Purposes where a lack of modeling is perceived.

The responses to the degree of satisfaction with the modeling languages used have been

combined with the programming languages used. This helps to understand how confident

quantum software developers feel regarding the modeling languages used. To accomplish these,

a contingency table has been built based on the results obtained from the previous questions.

Figure 13 depicts the results obtained sorted by the number of times the modeling tool has been

chosen. The modeling language BPMN was the highest-rated modeling language next to TOSCA.

8

12

10

9

5

5

7

0 2 4 6 8 10 12 14

Requirement Analysis

Architecture & Design

Implementation

Testing

Deployment

Observability

Analysis

8

8

0

1

Modeling hybrid software

Modeling quantum software

Modeling classical software

I haven't perceived any kind of lack

0 2 4 6 8 10

RQ1.3 - Purposes where a lack of modeling is perceived

RQ1.4 - Lifecycle phase where more modeling support is desired

Fig. 12. RQ1.3 - Purposes where a lack of modeling is perceived.

Although these languages are not the most widely used, those are the best-rated. The lowest rated

are ArchiMate, SYS-ML and State machine diagrams.

Figure 13. Average of the satisfaction degree with the employed modeling languages.

In summary, modeling in quantum software development does exist and is mainly used to

model hybrid software for documentation and conceptualization (among other things). For this

purpose, UML has been the most widely used modeling language along with flowcharts and

informal sketches. Within the phases where modeling has been used the most, the implementation

phase and architecture and design are those where models are most used. However, although there

is generally a positive satisfaction with modeling tools, there is still a perceived lack of modeling

in both hybrid and quantum software modeling.

4.3 GOAL 2: IMPLEMENTATION OF QUANTUM SOFTWARE
The second goal consists of characterizing which SDKs, tools, compilers, and languages are

used during the implementation of quantum software. To do this, respondents were first asked

which programming languages or toolkits they have used to develop quantum code. Figure 14

shows the results of this question, where the use of IBM's programming language, Qiskit

(45;27%), stands out. Next, the most used languages are Cirq (18;11%) and OpenQASM

(18;11%). Those who chose "Other" said they used "Duke ARTIQ extensions (DAX)", "Intel

Quantum", "Qibo" and "Quantum Tensor Flow".

3,36

3,25

3,60

3,25

3,00

4,13

3,63

4,00

3,25

3,50

1,00

0,00

0,00 1,00 2,00 3,00 4,00 5,00

Flowcharts

Informal sketches

UML

Data flow

State machine

BPMN

Entity Relation

TOSCA

Other

Petri-Nets

SYS-ML

ArchiMate

RQ1.1 & RQ1.3 - Average of the satisfaction degree with
the employed modeling languages

Fig. 13. RQ1.1 & RQ1.3 - Average of the satisfaction degree with the employed modeling languages.

In summary, modeling in quantum software development does exist and is mainly used to

model hybrid software for documentation and conceptualization (among other things). For

this purpose, UML has been the most widely used modeling language along with flowcharts

and informal sketches. Within the phases where modeling has been used the most, the

implementation phase and architecture and design are those where models are most used.

However, although there is generally positive satisfaction with modeling tools, there is still a

perceived lack of modeling in both hybrid and quantum software modeling.

4.3 Goal 2: Implementation of Quantum Software

The second goal consists of characterizing which SDKs, tools, compilers, and languages are

used during the implementation of quantum software. To do this, respondents were first asked

626 Quantum software development: a survey

what programming languages or toolkits they have used to develop quantum code. Fig. 14

shows the results of this question, where the use of IBM’s programming language, Qiskit (45;

27%), stands out. Next, the most used languages are Cirq (18; 11%) and OpenQASM (18;

11%). Those who chose ”Other” said they used ”Duke ARTIQ extensions (DAX)”, ”Intel

Quantum”, ”Qibo” and ”Quantum Tensor Flow”.

Figure 14. Quantum programming languages or toolkits used.

Respondents were asked which classical programming languages they used to develop the

hybrid code. Figure 15 shows the results, where Python (49;50%) was the most used programming

language as it is the programming language with the largest number of libraries for quantum

software development. Next, the most used languages are Java (12;12%), C++ (12;12%) and C#

(9;9%). Those who chose the "other" option stated that the classical programming language used

was Julia.

Figure 15. Classical programming languages used for developing hybrid software.

Respondents were asked about the type of architectures followed to build the hybrid

application. Figure 16 shows that the main architecture type is monolithic type (17;33%). The

next most used is a multi-layered type (14;27%), followed by a service-oriented type (13;25%.

The last option is the event-based architecture type (8;15%).

45

18

18

15

15

15

11

7

6

4

4

3

3

3

1

0

0 5 10 15 20 25 30 35 40 45 50

Qiskit

Cirq

OpenQASM2/3

Braket

D-Wave Ocean

PennyLane

Q#

Quantum Machine Learning (QML)

 Pytket

 Forest SDK

Other

Quantum Computation Language (QCL)

 QuantumPath

Silq

Strawberry Fields

Alibaba

RQ2.2 - Quantum programming languages or toolkits used

49

12

12

9

5

5

4

1

1

0 5 10 15 20 25 30 35 40 45 50 55

Python

C++

Java

C#

C

JavaScript

Rust

None

Other

RQ2.2 - Classical programming languages used for developing
hybrid software

Fig. 14. RQ2.2 - Quantum programming languages or toolkits used.

The respondents were asked which classical programming languages they used to develop

the hybrid code. Fig. 15 shows the results, where Python (49; 50%) was the most used

programming language, as it is the programming language with the largest number of libraries

for the development of quantum software. Next, the languages used are Java (12; 12%), C++

(12; 12%) and C# (9; 9%). Those who chose the ”other” option stated that the classical

programming language used was Julia.

The respondents were asked about the type of architectures followed to build the hybrid

application. Fig. 16 shows that the main architecture type is monolithic type (17; 33%). The

next most used is a multi-layered type (14; 27%), followed by a service-oriented type (13;

25%). The last option is the event-based architecture type (8; 15%).

Fig. 17 shows a plot obtained by the intersection of the answers obtained from the classic

programming languages used for the development of hybrid software and the type of architec-

ture implemented. Those who have developed software with a monolithic architecture, Python

came first along with C++, JavaScript, and C. Respondents who followed service-oriented

architectures, Java, C#, and C++ were used. For those who followed a multi-layered archi-

tecture used C, C#, and Java. Finally, for those who followed an event-driven architecture

have usually used Rust, JavaScript, and C.

The respondents were asked whether hybrid software had been tested. Most of the re-

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 627

Figure 14. Quantum programming languages or toolkits used.

Respondents were asked which classical programming languages they used to develop the

hybrid code. Figure 15 shows the results, where Python (49;50%) was the most used programming

language as it is the programming language with the largest number of libraries for quantum

software development. Next, the most used languages are Java (12;12%), C++ (12;12%) and C#

(9;9%). Those who chose the "other" option stated that the classical programming language used

was Julia.

Figure 15. Classical programming languages used for developing hybrid software.

Respondents were asked about the type of architectures followed to build the hybrid

application. Figure 16 shows that the main architecture type is monolithic type (17;33%). The

next most used is a multi-layered type (14;27%), followed by a service-oriented type (13;25%.

The last option is the event-based architecture type (8;15%).

45

18

18

15

15

15

11

7

6

4

4

3

3

3

1

0

0 5 10 15 20 25 30 35 40 45 50

Qiskit

Cirq

OpenQASM2/3

Braket

D-Wave Ocean

PennyLane

Q#

Quantum Machine Learning (QML)

 Pytket

 Forest SDK

Other

Quantum Computation Language (QCL)

 QuantumPath

Silq

Strawberry Fields

Alibaba

RQ2.2 - Quantum programming languages or toolkits used

49

12

12

9

5

5

4

1

1

0 5 10 15 20 25 30 35 40 45 50 55

Python

C++

Java

C#

C

JavaScript

Rust

None

Other

RQ2.2 - Classical programming languages used for developing
hybrid software

Fig. 15. RQ2.2 - Classical programming languages used for developing hybrid software.

Figure 16. Types of architectures of hybrid application systems.

Figure 17 shows a plot obtained by the intersection of the answers obtained from the classic

programming languages used for the development of hybrid software and the type of architecture

implemented. Those who have developed software with a monolithic architecture, Python came

first alongside C++, JavaScript, and C. Respondents who followed service-oriented architectures,

Java, C#, and C++ were used. For those who followed a multi-layered architecture used C, C#,

and Java. Finally, for those who followed an event-driven architecture have usually used Rust,

JavaScript, and C.

Figure 17. Type of architecture depending on the classical programming languages.

The respondents were asked whether hybrid software had been tested. Most of the

respondents answered yes (41;73%). Those who answered yes were asked which components

they had tested. Figure 18 displays the results, where the vast majority test both quantum and

classical software (32;78%). Five respondents just test quantum components (12%), and four

respondents just test classical components (10%).

17

14

13

8

0 2 4 6 8 10 12 14 16 18

Monolith

Multi-layered

Service-oriented

Event-based

31%

17%

27%

14%

25%

25%

17%

25%

39%

27%

36%

13%

25%

17%

27%

28%

27%

36%

38%

25%

33%

16%

17%

20%

14%

25%

25%

33%

0% 20% 40% 60% 80% 100%

Python

Java

C++

C#

C

JavaScript

Rust

RQ2.2 & RQ2.3 - Type of architecture depending on the classical
programming languages

Monolith Service-oriented Multi-layered Event-based

RQ2.3 - Type of the architectures of the hybrid application systems

RQ2.2 & RQ2.3 - Type of architecture depending on the classical

programming languages

Fig. 16. RQ2.3 - Types of architectures of hybrid application systems.

Figure 16. Types of architectures of hybrid application systems.

Figure 17 shows a plot obtained by the intersection of the answers obtained from the classic

programming languages used for the development of hybrid software and the type of architecture

implemented. Those who have developed software with a monolithic architecture, Python came

first alongside C++, JavaScript, and C. Respondents who followed service-oriented architectures,

Java, C#, and C++ were used. For those who followed a multi-layered architecture used C, C#,

and Java. Finally, for those who followed an event-driven architecture have usually used Rust,

JavaScript, and C.

Figure 17. Type of architecture depending on the classical programming languages.

The respondents were asked whether hybrid software had been tested. Most of the

respondents answered yes (41;73%). Those who answered yes were asked which components

they had tested. Figure 18 displays the results, where the vast majority test both quantum and

classical software (32;78%). Five respondents just test quantum components (12%), and four

respondents just test classical components (10%).

17

14

13

8

0 2 4 6 8 10 12 14 16 18

Monolith

Multi-layered

Service-oriented

Event-based

31%

17%

27%

14%

25%

25%

17%

25%

39%

27%

36%

13%

25%

17%

27%

28%

27%

36%

38%

25%

33%

16%

17%

20%

14%

25%

25%

33%

0% 20% 40% 60% 80% 100%

Python

Java

C++

C#

C

JavaScript

Rust

RQ2.2 & RQ2.3 - Type of architecture depending on the classical
programming languages

Monolith Service-oriented Multi-layered Event-based

RQ2.3 - Type of the architectures of the hybrid application systems

RQ2.2 & RQ2.3 - Type of architecture depending on the classical

programming languages

Fig. 17. RQ2.2 & RQ2.3 - Type of architecture depending on the classical programming languages.

spondents answered yes (41; 73%). Those who answered yes were asked which components

they had tested. Fig. 18 displays the results, where the vast majority test both quantum and

classical software (32; 78%). Five respondents only test quantum components (12%), and

628 Quantum software development: a survey

four respondents just test classical components (10%).

The responses obtained from the tested software components were compared with the

responses of the type of technique followed. Fig. 19 shows the results, where the type of

components tested is broken down depending on the type of testing technique carried out.

Those respondents who test both classical and quantum components usually follow a black-

box testing approach (25; 69%). Those respondents who only test classical software mostly

follow a white-box type of testing (3; 60%), while those who only test quantum software

employ black-box testing (3; 100%).

Figure 18. Software components tested.

The responses obtained from the tested software components were compared with the

responses of the type of technique followed. Figure 19 shows the results, where the type of

components tested is broken down depending to the type of testing technique carried out. Those

respondents who test both classical and quantum components usually follow a black-box testing

approach (25;69%). Those respondents who only test classical software mostly follow a white-

box type of testing (3;60%), while those who only test quantum software employ black-box

testing (3;100%).

Figure 19. Type of testing technique depending on the components tested.

With this goal in mind, it can be concluded that, according to this survey, the most widely

used programming languages are those developed by IBM (Qiskit and OpenQASM), in addition

to Cirq. Furthermore, it is possible to observe an absolute predominance of Python as the most

widely used classical programming language for developing hybrid software. The fact that most

of the quantum software libraries belong to this language contributes to this. In addition,

monolithic software architecture is the most widely used architecture. This may be due to the fact

that, among other reasons, research is the primary motivation for hybrid software development

(see Section 4.1). Finally, it can be ascertained that testing in hybrid software implementation

does exist.

32

5

4

0 5 10 15 20 25 30 35

Both quantum and classical

Just quantum software

Just classical software

RQ2.4 - Software components tested

100%

40%

69%

0%

60%

31%

0% 20% 40% 60% 80% 100%

Just quantum software

Just classical software

Both quantum and classical

Título del gráfico

White-box (e.g., statement coverage, decision coverage, branch coverage, condition
coverage, multiple condition coverage, finite state machine coverage, path coverage, etc)

Black-box (e.g., equivalence partitioning, boundary value analysis, decision table testing, state
transition testing, error guessing, etc.)

RQ2.4 - Type of testing technique depending on the components tested

Fig. 18. RQ2.4 - Software components tested.

Figure 18. Software components tested.

The responses obtained from the tested software components were compared with the

responses of the type of technique followed. Figure 19 shows the results, where the type of

components tested is broken down depending to the type of testing technique carried out. Those

respondents who test both classical and quantum components usually follow a black-box testing

approach (25;69%). Those respondents who only test classical software mostly follow a white-

box type of testing (3;60%), while those who only test quantum software employ black-box

testing (3;100%).

Figure 19. Type of testing technique depending on the components tested.

With this goal in mind, it can be concluded that, according to this survey, the most widely

used programming languages are those developed by IBM (Qiskit and OpenQASM), in addition

to Cirq. Furthermore, it is possible to observe an absolute predominance of Python as the most

widely used classical programming language for developing hybrid software. The fact that most

of the quantum software libraries belong to this language contributes to this. In addition,

monolithic software architecture is the most widely used architecture. This may be due to the fact

that, among other reasons, research is the primary motivation for hybrid software development

(see Section 4.1). Finally, it can be ascertained that testing in hybrid software implementation

does exist.

32

5

4

0 5 10 15 20 25 30 35

Both quantum and classical

Just quantum software

Just classical software

RQ2.4 - Software components tested

100%

40%

69%

0%

60%

31%

0% 20% 40% 60% 80% 100%

Just quantum software

Just classical software

Both quantum and classical

Título del gráfico

White-box (e.g., statement coverage, decision coverage, branch coverage, condition
coverage, multiple condition coverage, finite state machine coverage, path coverage, etc)

Black-box (e.g., equivalence partitioning, boundary value analysis, decision table testing, state
transition testing, error guessing, etc.)

RQ2.4 - Type of testing technique depending on the components tested

Fig. 19. RQ2.4 - Type of testing technique depending on the components tested.

With this goal in mind, it can be concluded that, according to this survey, the most

widely used programming languages are those developed by IBM (Qiskit and OpenQASM),

in addition to Cirq. Furthermore, it is possible to observe an absolute predominance of Python

as the most widely used classical programming language for developing hybrid software. The

fact that most of the quantum software libraries belong to this language contributes to this.

In addition, the monolithic software architecture is the most widely used architecture. This

may be due to the fact that, among other reasons, research is the primary motivation for

hybrid software development (see Section 4.1). Finally, it can be ascertained that testing

exists in hybrid software implementation.

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 629

4.4 Goal 3: Operation of Quantum Software

Goal 3 consists of characterizing which SDKs, tools, compilers, and languages are used

during the operation of quantum software. First, respondents were asked what execution

environment they had used (see Fig. 20). The local simulator option (39; 30%) was the most

chosen environment together with the cloud simulator (34; 26%). Then, the most chosen

environments were cloud QPU (31; 24%), hybrid runtime (20; 16%), and finally private QPU

(5; 4%).

Respondents were asked what they consider to be the most important reasons for switching

from a simulation environment to a real quantum computer. According to the data collected

(see Fig. 21), most of the respondents consider the validity of the results in the simulation

environment (38; 31%) and the next reason is that the tests have been passed correctly (27;

22%). Next, compulsion (22; 18%) is an important point, followed by the fact that execution

on quantum computers has become affordable (17; 14%) and the need for program complexity

(16; 13%). Those who said ”Other” (2; 2%) stated that other criteria are ”Promising results

on simulator” and ”reasonable to expect that the quantum hardware can execute the software

without succumbing to noise”.

4.4 GOAL 3: OPERATION OF QUANTUM SOFTWARE
Goal 3 consists of characterizing which SDKs, tools, compilers, and languages are used

during the operation of quantum software. First, respondents were asked which execution

environment they have used (see Figure 20). The local simulator option (39;30%) was the most

chosen environment along with the cloud simulator (34;26%). Then, the most chosen

environments were the cloud QPU (31;24%), hybrid runtime (20;16%) and, finally, the private

QPU (5;4%).

Figure 20. Execution environment used.

Respondents were asked what they consider to be the most important reasons for switching

from a simulation environment to a real quantum computer. According to the data collected (see

Figure 21), most of the respondents consider the validity of the results in the simulation

environment (38;31%) and the next reason is that the tests have been passed correctly (27;22%).

Next, compulsion (22;18%) is an important point, followed by the fact that execution on quantum

computers has become affordable (17;14%) and the need for program complexity (16;13%).

Those who said "Other" (2;2%) stated that other criteria are "Promising results on simulator" and

a "reasonable to expect that the quantum hardware can execute the software without succumbing

to noise".

Figure 21. Criteria for moving from a simulation environment to a real quantum computer.

39

34

31

20

5

0 5 10 15 20 25 30 35 40 45

Local simulator

Cloud simulator

Cloud QPU

Hybrid runtime

Private QPU

RQ3.1 - Execution environment used

38

27

22

17

16

2

0 5 10 15 20 25 30 35 40

Simulation results are valid

Tests passed correctly

It is mandatory (e.g., due to project requirements)

Execution on quantum computers has become
affordable

It is necessary (simulators are too weak for the
problem size)

Other

Criteria for moving from a simulation environment to a
real quantum computer

Fig. 20. RQ3.1 - Execution environment used.

4.4 GOAL 3: OPERATION OF QUANTUM SOFTWARE
Goal 3 consists of characterizing which SDKs, tools, compilers, and languages are used

during the operation of quantum software. First, respondents were asked which execution

environment they have used (see Figure 20). The local simulator option (39;30%) was the most

chosen environment along with the cloud simulator (34;26%). Then, the most chosen

environments were the cloud QPU (31;24%), hybrid runtime (20;16%) and, finally, the private

QPU (5;4%).

Figure 20. Execution environment used.

Respondents were asked what they consider to be the most important reasons for switching

from a simulation environment to a real quantum computer. According to the data collected (see

Figure 21), most of the respondents consider the validity of the results in the simulation

environment (38;31%) and the next reason is that the tests have been passed correctly (27;22%).

Next, compulsion (22;18%) is an important point, followed by the fact that execution on quantum

computers has become affordable (17;14%) and the need for program complexity (16;13%).

Those who said "Other" (2;2%) stated that other criteria are "Promising results on simulator" and

a "reasonable to expect that the quantum hardware can execute the software without succumbing

to noise".

Figure 21. Criteria for moving from a simulation environment to a real quantum computer.

39

34

31

20

5

0 5 10 15 20 25 30 35 40 45

Local simulator

Cloud simulator

Cloud QPU

Hybrid runtime

Private QPU

RQ3.1 - Execution environment used

38

27

22

17

16

2

0 5 10 15 20 25 30 35 40

Simulation results are valid

Tests passed correctly

It is mandatory (e.g., due to project requirements)

Execution on quantum computers has become
affordable

It is necessary (simulators are too weak for the
problem size)

Other

Criteria for moving from a simulation environment to a
real quantum computer

Fig. 21. RQ3.1 - Criteria for moving from a simulation environment to a real quantum computer.

Respondents were asked whether they used workflow technologies and language converters.

Fig. 22 illustrates the results of these questions. Regarding workflow technologies, most of

630 Quantum software development: a survey

the respondents do not use them (39; 87%). Concerning the use of language converters, most

of the respondents stated that they did not use them (36; 80%).

Although workflow technologies are not widely used, it is important to know how and

for what purpose they are used. To do this, the responses to the question on the type of

execution environment respondents have used have been intersected with those who responded

that they do use workflow technologies. The results can be seen in Fig. 23, where most of

the respondents who use workflow technologies use cloud QPUs (6; 20%), closely followed by

cloud simulators (5; 17%).

Respondents were asked whether they used workflow technologies and language converters.

Figure 22 illustrates the results from these questions. Regarding workflow technologies, most of

the respondents do not use them (39;87%). Concerning the use of language converters, most of

the respondents stated not to use them (36;80%).

Figure 22. Use of workflow technologies and language converters.

Although workflow technologies are not widely used, it is important to know how and for

what purpose they are used. To do this, the responses to the question on the type of execution

environment respondents have used have been intersected with those who responded that they do

use workflow technologies. The results can be seen in Figure 23, where most respondents who

use workflow technologies use Cloud QPUs (6;20%), closely followed by cloud simulators

(5;17%).

Figure 23. Execution environment used with workflow technologies.

In summary, this survey has shown that the operations phase as understood in classical

software is not fully developed. This can be assumed since most developers use local simulators

as execution environments and the absence of workflow technologies. Moreover, the fact that the

main focus of quantum software development is research and that the most commonly used

architecture type is monolithic are further indications of this. Perhaps in the future, when the

quantum computing paradigm is sufficiently mature, it will be possible to speak of an operations

phase as such.

6

39

0

10

20

30

40

50

Yes No

RQ3.2 - Use of workflow
technologies

11

36

0

10

20

30

40

50

Yes No

RQ3.3 - Use of language
converters

6

5

4

4

0

0 1 2 3 4 5 6 7

Cloud QPU

Cloud simulator

Hybrid runtime

Local simulator

Private QPU

RQ3.1 & RQ3.2 - Execution environment used with
workflow technologies

Fig. 22. RQ3.2 - Use of workflow technologies (left) and RQ3.3 - language converters (right).

Respondents were asked whether they used workflow technologies and language converters.

Figure 22 illustrates the results from these questions. Regarding workflow technologies, most of

the respondents do not use them (39;87%). Concerning the use of language converters, most of

the respondents stated not to use them (36;80%).

Figure 22. Use of workflow technologies and language converters.

Although workflow technologies are not widely used, it is important to know how and for

what purpose they are used. To do this, the responses to the question on the type of execution

environment respondents have used have been intersected with those who responded that they do

use workflow technologies. The results can be seen in Figure 23, where most respondents who

use workflow technologies use Cloud QPUs (6;20%), closely followed by cloud simulators

(5;17%).

Figure 23. Execution environment used with workflow technologies.

In summary, this survey has shown that the operations phase as understood in classical

software is not fully developed. This can be assumed since most developers use local simulators

as execution environments and the absence of workflow technologies. Moreover, the fact that the

main focus of quantum software development is research and that the most commonly used

architecture type is monolithic are further indications of this. Perhaps in the future, when the

quantum computing paradigm is sufficiently mature, it will be possible to speak of an operations

phase as such.

6

39

0

10

20

30

40

50

Yes No

RQ3.2 - Use of workflow
technologies

11

36

0

10

20

30

40

50

Yes No

RQ3.3 - Use of language
converters

6

5

4

4

0

0 1 2 3 4 5 6 7

Cloud QPU

Cloud simulator

Hybrid runtime

Local simulator

Private QPU

RQ3.1 & RQ3.2 - Execution environment used with
workflow technologies

Fig. 23. RQ3.1 & RQ3.2 - Execution environment used with workflow technologies.

In summary, this survey has shown that the operations phase as understood in classical

software is not fully developed. This can be assumed since most developers use local simulators

as execution environments and the absence of workflow technologies. Moreover, the fact that

the main focus of quantum software development is research and that the most commonly

used architecture type is monolithic are further indications of this. Perhaps in the future,

when the quantum computing paradigm is sufficiently mature, it will be possible to speak of

an operations phase as such.

4.5 Cross-goals Insights

The previous sections have been able to fulfill the purpose of addressing the stated objectives.

However, in order not to limit the characterization of the current state of quantum software

development, some inter-objective analyses have been performed. These analyses use the same

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 631

approach of intersecting the answers obtained from several questions but with the answers

belonging to different objectives.

The first analysis inter-objective accomplished is the itemization of the type of diagrams

employed depending on the type of architecture followed. Fig. 24 shows the results. Re-

spondents using informal sketches tend to use a monolithic architecture. Respondents using

TOSCA as a modeling language use either a monolithic or a service-oriented architecture,

which is to be expected since TOSCA is aimed at modeling service-oriented architectures.

The UML modeling language is used with multi-layered projects. This may be due to the

versatility of UML to model the different layers of a project. Those that mainly use an

event-based architecture are those that model with Petri-Nets and entity relation diagrams.

4.5 CROSS-GOALS INSIGHTS
The previous sections have been able to fulfill the purpose of addressing the stated

objectives. However, in order not to limit the characterization of the current state of quantum

software development, some inter-objective analyses have been performed. These analyses use

the same approach of intersecting the answers obtained from several questions, but with the

answers belonging to different objectives.

The first analysis inter-objective accomplished is the itemization of the type of diagrams

employed depending on the type of architecture followed. Figure 24 shows the results.

Respondents using informal sketches tend to use a monolithic architecture. Respondents using

TOSCA as a modeling language use either a monolithic or a service-oriented architecture, which

is to be expected since TOSCA is aimed at modeling service-oriented architectures. The UML

modeling language is used with multi-layered projects. This may be due to the versatility of UML

to model the different layers of a project. Those that mainly use an event-based architecture are

those that model with Petri-Nets and entity relation diagrams.

Figure 24. Architecture followed within each modeling language.

The results obtained from the questions of which quantum programming languages

respondents use have been disaggregated by the execution environment used. This provides

insight into the execution environments of each programming language. Figure 25 shows the

results obtained. Alibaba is not represented since any respondent chose such option. Those

respondents who use QCL and QuantumPath are the ones who use Cloud QPUs the most on

average to run their quantum programs. Those who develop programs in Forest SDK mostly use

hybrid runtimes and cloud simulators to run their programs. As expected, there is a general

consensus that local execution of programs is the most accessible way to run these programs.

Finally, respondents using Silq and Strawberry Fields mostly run their programs on private QPUs

18%

22%

22%

23%

41%

33%

33%

25%

40%

18%

40%

36%

17%

11%

26%

23%

8%

25%

60%

24%

20%

36%

33%

33%

32%

23%

33%

33%

25%

47%

40%

9%

28%

33%

19%

14%

33%

25%

25%

12%

0%

0% 20% 40% 60% 80% 100%

BPMN

Data flow

Entity Relation

Flowcharts

Informal sketches

Petri-Nets

State machine

SYS-ML

TOSCA

UML

Other

RQ1.1 & RQ2.3 - Architecture followed within each modeling
language

Monolith Service-oriented Multi-layered Event-based

Fig. 24. Architecture followed within each modeling language.

The results obtained from the questions of which quantum programming languages re-

spondents use have been disaggregated by the execution environment used. This provides

insight into the execution environments of each programming language. Fig. 25 shows the

results obtained. Alibaba is not represented since any respondent chose such an option. Those

respondents who use QCL and QuantumPath are the ones who use Cloud QPUs the most on

average to run their quantum programs. Those who develop programs in Forest SDK mostly

use hybrid runtimes and cloud simulators to run their programs. As expected, there is a

general consensus that local execution of programs is the most accessible way to run these

programs. Finally, respondents using Silq and Strawberry Fields mostly run their programs

on private QPUs compared to the rest. This may be due to the fact that the respondents

using these languages work in organizations with access to private quantum computers.

The responses obtained from the use of models in the different phases of the quantum soft-

632 Quantum software development: a survey

compared to the rest. This may be due to the fact that the respondents using these languages work

in organizations with access to private quantum computers.

Figure 25. Execution environment used for each quantum programming language.

The responses obtained from the use of models in the different phases of the quantum

software development cycle have been broken down (see Figure 9) and intersected with the testing

techniques used by the respondents. Figure 26 shows the results, where those respondents who

create models during the testing phase usually follow a black-box testing approach (2;67%).

Respondents who use models during this phase tend to take a black-box testing approach (8;57%)

rather than a white-box approach (6;43%). Furthermore, those who update models during this

phase take a black-box testing approach (9;64%).

29%

23%

27%

30%

29%

24%

23%

28%

29%

38%

30%

38%

33%

25%

14%

17%

19%

20%

30%

13%

22%

17%

21%

29%

25%

17%

17%

24%

21%

25%

30%

21%

22%

25%

21%

14%

25%

26%

25%

17%

25%

29%

24%

29%

23%

10%

29%

27%

29%

26%

29%

13%

22%

38%

17%

25%

29%

5%

8%

5%

8%

5%

5%

5%

4%

17%

25%

29%

0% 20% 40% 60% 80% 100%

Braket

Cirq

D-Wave Ocean

 Forest SDK

Q#

OpenQASM2/3

Qiskit

PennyLane

Pytket

Quantum Computation Language (QCL)

Quantum Machine Learning (QML)

QuantumPath

Silq

Strawberry Fields

Other

RQ2.2 & RQ3.1 - Execution environment used for each quantum
programming language

Cloud QPU Hybrid runtime Cloud simulator Local simulator Private QPU

RQ2.2 & RQ3.1 - Execution environment used for each quantum

programming language

Fig. 25. Execution environment used for each quantum programming language.

ware development cycle have been broken down (see Fig. 9) and intersected with the testing

techniques used by the respondents. Fig. 26 shows the results, where those respondents who

create models during the testing phase usually follow a black-box testing approach (2; 67%).

Respondents who use models during this phase tend to take a black-box testing approach (8;

57%) rather than a white-box approach (6; 43%). Furthermore, those who update models

during this phase take a black-box testing approach (9; 64%).

The analyses carried out on the responses obtained are just a few examples of all the

analyses that can be carried out. All the answers can be found in [43], and if any researcher

would like to carry out further analysis, the data is available.

4.6 Correlation Study

A correlation study has been conducted with the responses obtained. First, to apply the

appropriate algorithms, it was necessary to transform the dataset into a numeric format. For

this, the One Hot Encoding coding method has been applied to the dataset of the responses

obtained. This strategy involves creating binary columns for each unique value that exists in

the categorical variable being encoded. In the case that a value is present in the record, the

corresponding column for the present value is marked with 1, and if it is not present, it is

marked with 0.

Once the dataset has been binarized, the ’association’ function from the Pythons library

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 633

Figure 26. Testing techniques regarding the use, creation, and update of models during the test phase.

The analyses carried out on the responses obtained are just a few examples of all the analyses

that can be carried out. All the answers can be found in [41], and if any researcher would like to

carry out further analysis, the data is available.

4.6 CORRELATION STUDY
A correlation study has been conducted with the obtained responses. First, to apply the

appropriate algorithms, it was necessary to transform the dataset into a numeric format. For this,

the One Hot Encoding coding method has been applied to the dataset of the obtained responses.

This strategy involves creating binary columns for each unique value that exists in the categorical

variable being encoded. In the case that a value is present in the record, the corresponding column

for the present value is marked with 1, and if it is not present, it is marked with a 0.

Once the dataset has been binarized, the 'association' function from the Python’s library

dython, version 0.7.1 [42]. This function calculates the correlation or strength of association

between features in the dataset, including both categorical and continuous features, using

Pearson's R for continuous-continuous cases, correlation ratio for categorical-continuous cases,

and Cramer's V or Theil's U for categorical-categorical cases. To calculate the correlation

coefficient, Pearson's correlation coefficient has been used, where values greater than 0.5 indicate

a strong correlation. The heat map generated from the association study can be observed in [41].

Table 3 displays the results of filtering the data obtained from the correlation study and obtaining

those metrics that have obtained a correlation index equal to or greater than 0.80. Some of the

insights that can be extracted are:

• Survey respondents who use informal sketches often employ “lines and boxes” as a

modeling approach, and the reason for using them is that “sketches are faster”.

• Survey respondents who use UML as a modeling language employ class diagrams to

design quantum or hybrid software.

• Survey respondents who use deployment diagrams in UML use QPath as a workflow

technology.

• Survey respondents who are not satisfied with current modeling tools often use Silq as a

quantum programming language.

• Survey respondents who employ workflow technologies consider the most important

reasons for choosing a workflow technology to be related to functional requirements,

64%

57%

67%

36%

43%

33%

0% 20% 40% 60% 80%

Updated a model during...

Used or referenced a model during...

Created a model during...

RQ1.1 & RQ2.4 - Testing techniques regarding the use, creation,
and update of models during the test phase

White-box (e.g., statement coverage, decision coverage, branch coverage, condition
coverage, multiple condition coverage, finite state machine coverage, path coverage,
etc)
Black-box (e.g., equivalence partitioning, boundary value analysis, decision table testing,
state transition testing, error guessing, etc.)

Fig. 26. Testing techniques regarding the use, creation, and update of models during the test

phase.

dython (version 0.7.1) [42]. This function calculates the correlation or strength of association

between features in the dataset, including both categorical and continuous features, using

Pearson’s R for continuous-continuous cases, correlation ratio for categorical-continuous cases,

and Cramer’s V or Theil’s U for categorical-categorical cases. To calculate the correlation

coefficient, Pearson’s correlation coefficient has been used, where values greater than 0.5

indicate a strong correlation. The heat map generated from the association study can be

observed in [43]. Table 3 displays the results of filtering the data obtained from the correlation

study and obtaining the metrics that have obtained a correlation index equal to or greater

than 0.80. Some of the insights that can be extracted are the following:

• Survey respondents who use informal sketches often employ lines and boxes as a mod-

eling approach, and the reason for using them is that sketches are faster.

• Survey respondents who use UML as a modeling language employ class diagrams to

design quantum or hybrid software.

• Survey respondents who use deployment diagrams in UML use QPath as a workflow

technology.

• Survey respondents who are not satisfied with current modeling tools often use Silq as

a quantum programming language.

• Survey respondents who employ workflow technologies consider the most important

reasons for choosing a workflow technology to be related to functional requirements,

features of the tool, service availability, quality of the documentation, and extensibility

of the technology.

• Survey respondents who use Quantum Programming Studio as a language converter do

so because it meets the functional requirement of functionality.

Furthermore, the negative correlation between the metrics has been studied (the data set

with all the correlations can be found in [43]). However, in general, no significant relationships

have been found. Some exceptions are:

634 Quantum software development: a survey

Table 3. Metrics with an association over 0.8.
Question 1 Question 2 Corre-

la-
tion

Which modeling languages or diagram types have
you used during the development of quantum soft-
ware? - Informal sketches

Regarding informal sketches... Which approach
did you follow for modeling an informal sketch?
- Lines and boxes

0.92

What were your reasons to employ informal
sketches? - Sketches are faster

0.92

Which modeling languages or diagram types have
you used during the development of quantum soft-
ware? - UML

Regarding UML... What kind of UML diagrams
have you used during the modeling of (hybrid)
quantum software? - Class diagrams

0.95

Regarding UML... What kind of UML diagrams
have you used during the modeling of (hybrid)
quantum software? - Deployment diagram

What workflow technologies have you used for or-
chestrating (hybrid) quantum software? - QPath
(www.quantumpath.es)

1

Regarding UML... What kind of UML diagrams
have you used during the modeling of (hybrid)
quantum software? - Other

What were your reasons for choosing these quan-
tum programming languages or toolkits (regarding
non-functional requirements)? - Other

1

Regarding informal sketches... Which approach
did you follow for modeling an informal sketch?
- Lines and boxes

What were your reasons to employ informal
sketches? - Sketches are faster

0.91

How satisfied are you with the employed modeling
languages? (Not considering informal sketches) -
1

What quantum programming languages or toolkits
have you used for developing software? - Silq

0.81

What were your reasons for choosing these quan-
tum programming languages or toolkits (regarding
functional requirements)? - Other

What were your reasons for choosing these execu-
tion environments (regarding functional require-
ments)? - Other

1

Do you use workflow technologies or similar ones
for orchestrating (hybrid) quantum software? -
Yes

What were your reasons for choosing these execu-
tion environments (regarding functional require-
ments)? - Features

0.9

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Service availability

0.9

What were your reasons for selecting these work-
flow technologies (regarding non-functional
requirements)? - Quality of documenta-
tion/tutorials

0.9

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Extensibility

0.9

What were your reasons for selecting these work-
flow technologies (regarding functional require-
ments)? - Availability of pre-implemented work-
flows/algorithms

What were your reasons for selecting these work-
flow technologies (regarding functional require-
ments)? - Features

0.88

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Service availability

0.88

What were your reasons for selecting these work-
flow technologies (regarding non-functional
requirements)? - Quality of documenta-
tion/tutorials

0.88

What were your reasons for selecting these work-
flow technologies (regarding functional require-
ments)? - Features

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Service availability

1

What were your reasons for selecting these work-
flow technologies (regarding non-functional
requirements)? - Quality of documenta-
tion/tutorials

1

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Traceability

0.88

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Service availability

What were your reasons for selecting these work-
flow technologies (regarding non-functional
requirements)? - Quality of documenta-
tion/tutorials

1

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Traceability

0.88

What were your reasons for selecting these work-
flow technologies (regarding non-functional
requirements)? - Quality of documenta-
tion/tutorials

What were your reasons for selecting these work-
flow technologies (regarding non-functional re-
quirements)? - Traceability

0.88

Which standalone language converters (transla-
tor) have you employed? - Quantum Programming
Studio

What were your reasons for selecting these lan-
guage converters (regarding functional require-
ments)? - Functionality

1

What were your reasons for selecting these lan-
guage converters (regarding functional require-
ments)? - Language support

What were your reasons for selecting these lan-
guage converters (regarding non-functional re-
quirements)? - Ease-of-use

0.88

What were your reasons for selecting these lan-
guage converters (regarding non-functional re-
quirements)? - Ease-of-use

What were your reasons for selecting these lan-
guage converters (regarding non-functional re-
quirements)? - Performance

0.86

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 635

• Some respondents who consider the ”Compliance” requirement when choosing a model-

ing language do not use the Qiskit quantum programming language (correlation index

between these two metrics of -0.55).

• Survey respondents who rated their satisfaction as 2 out of 5 regarding current modeling

languages do not typically work for organizations with Research as motivation regarding

the development of quantum software (correlation index between these two metrics of

-0.48).

• Survey respondents who use Qiskit as a quantum programming language do not typically

use Quantum Programming Studio as a language converter (correlation index between

these two metrics of -0.48).

• Survey respondents who develop monolithic quantum or hybrid software have not chosen

Execution time as a reason for choosing an execution environment (correlation index

between these two metrics of -0.47).

In summary, thanks to the correlation study conducted, several insights have been obtained

that would not have been possible to discover otherwise. These insights have been extracted

from both strongly correlated metrics and metrics that have a negative correlation.

4.7 Threats to Validity

The validity of the study findings could be undermined by several potential threats. These

threats have been classified according to [45].

Construct validity concerns generalizing the result of the experiment to the concept or

theory behind the experiment. A major threat that could affect the construct validity is

the questionnaire bias. This occurs when the questions on the survey are worded in a way

that is confusing, ambiguous, or biased, leading to inaccurate responses. To mitigate this

threat, some researchers (who have not participated in the final survey) were surveyed in a

pilot study. The collected feedback was used to improve the questionnaire and mitigate this

threat.

Threats to internal validity are the extent to which particular factors affect the method-

ological rigor. These threats might appear during the preparation and cleaning of the data.

In order to deal with that, a protocol performed by at least two researchers was established.

This allowed a systematic analysis and review of the responses and data generated. Once the

questionnaire was closed, the responses were stored and processed, following the experimental

procedure explained in Section 3.4.

Threats to the conclusion validity are concerned with issues that affect the ability to

draw the correct conclusion about relations between the treatment and the outcome of an

experiment. These threats may affect the reliability of the measures to alleviate these threats,

measures that have helped address each of the research questions have followed an exhaustive

protocol explained in Section 3.6. In addition, the survey responses obtained are available in

[43], allowing the experiment to be replicated and ensuring that the same conclusions can be

drawn.

Threats to external validity are conditions that limit our ability to generalize the results

of our experiment to industrial practice. The sampling bias could be a threat to external

636 Quantum software development: a survey

validity as a total of 57 answers were obtained. However, after the data filtering a total of

49 answers remained. This could be considered a sample not representative of the target

population, leading to results that cannot be generalized to the population. Nevertheless, the

fact that the quantum software paradigm is not yet mature and with a narrow community

means that findings could be considered representative to a certain extent.

5 Discussion

Thanks to this survey, several previously unknown insights into quantum software develop-

ment have been discovered. Firstly, it was found that modeling during quantum software

development does exist up to a certain extent. Thus, the most commonly used are UML,

flowcharts, and informal sketches. Secondly, regarding the implementation of quantum soft-

ware, according to the survey results, the most commonly used quantum programming lan-

guages are Qiskit, OpenQASM, and Cirq, with a predominance of monolithic architectures.

Finally, it may be too early to talk about the operation of quantum software, as mainly local

simulators are used as execution environments and there is, in most cases, a lack of workflow

technologies.

During the analysis of the survey responses, several unexpected findings have been dis-

covered that were previously unknown. Among them, there is a positive satisfaction with the

modeling tools used during quantum software development. This may be related to the fact

that informal sketches are one of the most widely used tools for modeling quantum software.

Informal sketches are a tool that can be adapted to any problem, as they do not have a spe-

cific format. Yet, more modeling support would be needed in the phase of architecture and

design. Another key finding discovered is that testing in hybrid software does exist and that

depending on the component to be tested (hybrid or quantum-only), one testing approach or

another is used. This may be due to the lack of testing tools available that are aimed only at

testing quantum software.

Although the number of respondents to the survey may seem small, it must be taken

into account that there are currently not a large number of quantum software developers.

However, the fact that it is not possible to determine a specific number to be considered

representative of this population can be seen as a limitation of this study. While we believe

this limitation has not impacted the primary outcome of the study, the survey responses and

data are offered to the scientific community in order to generate new insights that have not

been found during the analysis of the results.

6 Conclusion and Future Work

Quantum computing is increasingly drawing the attention of organizations and governments,

as it is expected to be implemented in our information systems in the next few years. To

address this task effectively, it is necessary to transfer knowledge from software engineering to

quantum computing. This will allow companies and institutions to develop quantum software

in an industrial and controlled way. However, there is no evidence of the modeling tools that

are currently employed during quantum software development.

This study conducts a survey questionnaire to find out the current status of software

modeling within quantum software development. In addition, respondents were also asked

about the tools they use to develop quantum software, making a distinction between the

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 637

implementation and operation phase. This distinction will help to better understand the

context of quantum software development and to understand how mature quantum computing

is with respect to software.

With this research, it is hoped that the state of the art of quantum computing with

respect to software modeling will be studied in more depth in the future. Furthermore, having

investigated the implementation of the software has allowed us to discover the architectures

that are followed and how the testing of hybrid programs is carried out, among other things.

It is also essential to know the operation of quantum software in order to see how it evolves

and changes in the whole lifecycle when this paradigm is more mature.

In future work, the knowledge gained from this survey is expected to help in other research

areas. These areas include further research on software modeling in the field of quantum com-

puting and additional adaptations of good practices from the field of classical software engi-

neering to quantum software. With this research, we expect to contribute to the (necessary)

development of the QSE field.

Acknowledgements

This work has been supported by grants PID2022-137944NB-I00 (SMOOTH Project) and

PDC2022-133051-I00 (QU-ASAP Project) funded by MICIU/AEI/ 10.13039/501100011033

and by the European Union NextGenerationEU/PRTR. Also, this project has been partially

funded by the BMWi project PlanQK (01MK20005N).

References

1. Zhao, J. Quantum software engineering: Landscapes and horizons. 2020.
2. Prez-Castillo, R., Jimnez-Navajas, L., & Piattini, M. Modelling Quantum Circuits with UML.

2021.
3. Prez-Delgado, C. A., & Perez-Gonzalez, H. G. Towards a quantum software modeling language.

In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Work-
shops. 2020.

4. Prez-Castillo, R., Jimnez-Navajas, L., & Piattini, M. QRev: migrating quantum code towards
hybrid information systems. 2021: p. 1-30.

5. Weder, B. et al. Quantum software development lifecycle in Quantum Software Engineering. 2022
Springer. p. 61-83.

6. Wild, K. et al. TOSCA4QC: Two Modeling Styles for TOSCA to Automate the Deployment and
Orchestration of Quantum Applications. In 2020 IEEE 24th International Enterprise Distributed
Object Computing Conference (EDOC). 2020.

7. Zapata Computing. The First Annual Report on Enterprise Quantum Computing Adoption. 2022.
8. Unitary Fund Team. Quantum Open Source Software Survey. 2022.
9. Garca de la Barrera, A. et al. Quantum software testing: State of the art. 2021: p. e2419.

10. Weder, B. et al. The quantum software lifecycle. In Proceedings of the 1st ACM SIGSOFT Inter-
national Workshop on Architectures and Paradigms for Engineering Quantum Software. 2020.

11. Ricardo Prez-Castillo, Manuel ngel Serrano, Jos A. Cruz-Lemus, Mario Piattini. Guidelines to
use the ICSM for developing quantum-classical systems. Quantum Inf. Comput. 24(1&2): 71-88
(2024). https://doi.org/10.26421/QIC24.1-2-4.

12. Basili, V. R., Caldiera, G., & Rombach, D. H. The goal question metric approach. 1994: p. 528-532.
13. Feynman, R. P. Simulating physics with computers in Feynman and computation. 2018 CRC

Press. p. 133-153.
14. Gyongyosi, L., & Imre, S. A Survey on quantum computing technology. Computer Science Review

638 Quantum software development: a survey

2019. 31: p. 51-71.
15. Svore, K. et al. Q#: Enabling Scalable Quantum Computing and Development with a High-

level DSL in Proceedings of the Real World Domain Specific Languages Workshop 2018. 2018
Association for Computing Machinery: Vienna, Austria. p. Article 7.

16. Cross, A. W. et al. Open quantum assembly language. 2017.
17. Cross, A. The IBM Q experience and QISKit open-source quantum computing software. In APS

March Meeting Abstracts. 2018.
18. Hancock, A. et al. Cirq: A Python Framework for Creating, Editing, and Invoking Quantum

Circuits. 2019.
19. Killoran, N. et al. Strawberry fields: A software platform for photonic quantum computing. 2019.

3: p. 129.
20. Hevia, J. L., Peterssen, G., & Piattini, M. QuantumPath: A quantum software development plat-

form. Software: Practice and Experience 2021.
21. Services, A. W. Amazon Braket. 2020; Available from: https://aws.amazon.com/es/braket/.
22. Hevia, J. L. et al. Quantum computing. 2021. 38(5): p. 7-15.
23. Garcia-Alonso, J. et al. Quantum software as a service through a quantum API gateway. 2021.

26(1): p. 34-41.
24. Moguel, E. et al. Quantum service-oriented computing: current landscape and challenges. 2022.

30(4): p. 983-1002.
25. Piattini, M. et al. The Talavera Manifesto for Quantum Software Engineering and Programming.

In QANSWER. 2020.
26. Piattini, M. et al. Toward a Quantum Software Engineering. 2021. 23(1): p. 62-66.
27. Weder, B. et al. Integrating quantum computing into workflow modeling and execution. In 2020

IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). 2020. IEEE.
28. Jimnez-Navajas, L., Prez-Castillo, R., & Piattini, M. Reverse Engineering of Quantum Programs

Toward KDM Models. In International Conference on the Quality of Information and Communi-
cations Technology. 2020 Springer. p. 249-262.

29. Blanco, M. ., & Serrano, M. Quantum Information Technology Governance System in Quantum
Software Engineering. 2022 Springer. p. 39-59.

30. Li, H., Khomh, F., & M. Openja. Understanding Quantum Software Engineering Challenges:
An Empirical Study on Stack Exchange Forums and GitHub Issues. In 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2021. IEEE.

31. Khan, A. A. et al. Agile Practices for Quantum Software Development: Practitioners Perspectives.
2022.

32. De Stefano, M. et al. Software engineering for quantum programming: How far are we? Journal
of Systems and Software 2022. 190: p. 111326.

33. C. Hughes, D. Finke, D. -A. German, C. Merzbacher, P. M. Vora and H. J. Lewandowski, ”As-
sessing the Needs of the Quantum Industry,” in IEEE Transactions on Education, vol. 65, no. 4,
pp. 592-601, Nov. 2022, doi: 10.1109/TE.2022.3153841.

34. D-Wave. Survey about the quantum commercial trends. 2022; Available from:
https://www.dwavesys.com/quantum-commercial-trends/.

35. Classiq. Classiq’s survey. 2021; Available from: https://www.classiq.io/insights/2021-survey-part-
1.

36. Basili, V. R., Shull, F., & Lanubile, F. Building knowledge through families of experiments. 1999.
25(4): p. 456-473.

37. SurveySparrow. SurveySparrow webpage. 2023; Available from: https://surveysparrow.com/.
38. aQuantum. aQuantum’s webpage. 2023; Available from: https://www.aquantum.es/.
39. International Conference on Software Engineering (ICSE). ICSE’s webpage. 2023; Available from:

http://www.icse-conferences.org/.
40. International Conference on Quantum Computing (QCE). QCE’s web page. 2022; Available from:

https://qce.quantum.ieee.org/2022/.
41. International Conference on the Quality of Information and Communications Technology

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 639

(QUATIC). QUATIC’s webpage. 2023; Available from: http://www.quatic.org/.
42. GitHub. GitHub REST API documentation. 2022; Available from:

https://docs.github.com/en/rest?apiVersion=2022-11-28.
43. Luis Jimnez-Navajas, R. P.-C. Quantum Software Development Survey’s GitHub repository. 2023;

Available from: https://github.com/luisjimenez24/quantumsoftwaresurvey.
44. Zychlinski, S. Dython’s GitHub repository. 2022; Available from:

https://github.com/shakedzy/dython.
45. Wohlin, C. et al. Experimentation in software engineering. 2012: Springer Science & Business

Media.

Appendix A. Survey questions’ metrics

This Appendix provides the tables with the whole list of metrics used in the survey.

640 Quantum software development: a survey

Table A.1. Defined metrics for the goal G1.

Question Metric

RQ1.1

M111 Software components modelled:
[classical only; both; quantum only; none]
M112 Modeling languages and diagram types employed:
[UML [class diagrams, activity diagrams, use case diagram, state machine
diagram, sequence diagram, component diagram, deployment diagram,
other]; SYS-ML; Petri-Nets; entity-relation diagrams; flowcharts; BPMN;
Archimate; workflow; dataflow; state machine; informal sketches/models;
TOSCA; other]
M113 Purpose of the diagram or informal sketch:
[conceptualization/drafting; communication with manager/customer/other
teams; documentation; generation of code; model-driven engineering; other]
M114 Phase of the quantum software lifecycle phase where models
were used:
[requirement analysis; architecture & design; implementation; testing;
deployment; observability; analysis]
M115 Criteria for selecting a modeling language:
[availability and quality of documentation; active community; compliance;
personal preference; tooling support; usefulness; other]
M116 Tools employed for drawing and/or visualization:
[IDE integrated solution; circuit composer; general drawing tool (ppt,
drawio); specialized tools for modeling; other]

RQ1.2
M121 Approach followed for modeling an informal sketch:
[lines and boxes; quantum circuits sketches; mathematical notations; UI
mockup sketches; none; other]
M122 Reasons for employing informal sketches (over modeling
language):
[lack of formal modeling language; no desire to use modeling language;
internal format for sketches; sketches are faster; was drawn on the spot;
other]

RQ1.3
M131 Satisfaction degree regarding the modeling languages
employed:
[Likert scale: I can model everything with existing languages; there is no
modeling language fitting my needs]
M132 Phase of the development lifecycle where there is a lack of
modeling languages:
[requirement analysis; architecture & design; implementation; testing;
deployment; observability; analysis; all]
M133 Purposes where there is a lack of modeling languages:
[purpose: modeling quantum circuits; modeling hybrid programs; modeling
classical parts; other]

Luis Jimenez-Navajas, Fabian Buhler, Frank Leymann, Ricardo Perez-Castillo, Mario Piattini, and Daniel Vietz 641

Table A.2. Defined metrics for the goal G2.

Question Metric

RQ2.1

M221 Size of the organization: [micro (less than 10); medium (less than
50); medium-large (less than 250); large (more than 250)]
M222 Market sector: [public; private; mixed; unknown]
M223 Application area of the quantum software: [chemistry;
commerce; consumer goods; education; energy; financial services;
government; health; IT; logistic; research; telecommunication; other]
M224 Motivation for developing quantum software: [better
performance; quality of results; to be future ready; cheaper; research; other]

RQ2.2

M221 Quantum programming language/toolkit/library employed:
[Alibaba Cloud Quantum Development Platform (ACQDP); Braket; Cirq;
D-Wave Ocean; Forest SDK; Q#; OpenQASM2/3; Qiskit; Pennylane;
Pytket; Quantum Computation Language (QCL); Quantum Machine
Learning (QML); QuantumPath; Silq; Strawberry Fields; other]
M222 Reasons for selecting this quantum programming language
(functional requirements): [availability of compilers/runtime; availability
of algorithms implemented; compatibility with other programming
languages; compatibility with QC resource; Integration with execution
environment; language features (OOP, functional programming, threads or
processes, Gate-Based QC, Adiabatic QC); tooling support; transpiling
capabilities; other]
M223 Reasons for using this quantum programming language
(non-functional requirements): [active community; compilation
optimization features; cost; expressiveness of the problem (fit to the problem
type); scalability and performance; learning curve; maintainability;
portability; productivity (previous experience with similar languages);
quality of documentation; supporting tools (IDE, linter, formatter, libraries);
traceability (previous experience with similar languages); usability; other]
M224 Classical programming languages employed in hybrid
application system: [C; C++; C#; Java; JavaScript; Python; Rust; none;
other]
M225 Parts of SDKs employed: [quantum gates/circuit definitions;
pre-implemented algorithms; cloud execution; local execution;
compiler/transpiler; other]

RQ2.3
M231 Architecture of the hybrid application system: [monolith;
service-oriented; multilayered; event-driven; REST API; other]
M232 Integration style among classical and quantum components:
[hard-coded endpoint calls / RPC; file transfer; shared database; messaging;
none/manual; other]

RQ2.4
M242 Software parts tested: [quantum software and classical software;
just quantum software; just classical software; none; other]
M243 Employed quantum testing environments/tools/frameworks:
[QuTAF; xyz; other]
M244 Testing techniques followed: [black-box (equivalence partitioning,
boundary value analysis, decision table testing, state transition testing, error
guessing); white-box (statement coverage, decision coverage, branch
coverage, condition coverage, multiple condition coverage, finite state
machine coverage, path coverage, mutation testing, other)]

642 Quantum software development: a survey

Table A.3. Defined metrics for the goal G3.

Question Metric

RQ3.1

M311 Used execution environment:
[cloud QPU; hybrid runtime; cloud simulator; local simulator; private QPU;
other]
M312 Reasons for selecting this execution environment (functional
requirements):
[availability of algorithms (hybrid programs); usable QPUs; execution time;
accessibility of the execution environment; other]
M313 Reasons for selecting this execution environment
(non-functional requirements):
[service availability; costs; quality of documentation/tutorials; traceability;
usability; other]
M314 Reasons for a move from simulation environment to an
execution environment that uses real quantum computers (QPU):
[tests passed correctly; simulations results are valid; affordable execution on
quantum computers; unavailability of simulate the quantum software;
mandatory requirements; other]

RQ3.2
M321 Used Workflow Technologies:
[Orquestra; BPMN Engines (Camunda); Covalent; QPath; other]
M322 Reasons for selecting this workflow technology (functional
requirements):
[availability of pre-implemented workflows/algorithms; features;
compatibility with programming language; other]
M323 Reasons for selecting this workflow technology
(non-functional requirements):
[service availability; costs; quality of documentation/tutorials; traceability;
extensibility; other]

RQ3.3
M331 Employed standalone language converter (translator):
[Pytket; Pennylane; Quantum Programming Studio; other]
M332 Reasons for selecting this language converter (functional
requirements):
[language support; optimization features; functionality; other]
M333 Reasons for selecting this language converter
(non-functional requirements):
[costs; ease of use; quality of documentation/tutorials; performance; other]

