
Quantum Information and Computation, Vol. 24, No. 9&10 (2024) 721–733
c© Rinton Press

LINEAR CIRCUIT SYNTHESIS USING WEIGHTED STEINER TREES

NIR GAVRIELOV

Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram
Jerusalem 91904, Israel

ALEXANDER IVRII, SHELLY GARION

IBM Quantum, IBM Research Israel, Haifa University Campus, Mount Carmel

Haifa 3498825, Israel

Received May 18, 2024

Revised August 6, 2024

CNOT circuits are a common building block of general quantum circuits. The problem

of synthesizing and optimizing such circuits has received a lot of attention in the quan-

tum computing literature. This problem is especially challenging for quantum devices
with restricted connectivity, where two-qubit gates can only be placed between adjacent

qubits. The state-of-the-art algorithms for optimizing the number of CNOT gates are

heuristic algorithms that are based on Gaussian elimination and that use Steiner trees
to connect between different subsets of qubits. In this article, we suggest considering

weighted Steiner trees, and we present a simple low-cost heuristic to compute weights.

The simulated evaluation shows that the suggested heuristic is almost always beneficial
and reduces the number of CNOT gates by up to 10%.

Keywords: linear circuit synthesis, Steiner trees, quantum circuit compilation, quantum
information

1 Introduction

Quantum circuit synthesis is a process of constructing a quantum circuit that implements a

given unitary operator and can be executed on a given quantum device while minimizing the

number of gates or the depth of the circuit. Quantum devices differ in terms of supported

gate set and connectivity. For instance, superconducting quantum devices support single-

qubit rotations and the two-qubit CNOT gates; moreover, the CNOT gates can only be

placed between the “connected” qubits. Hence, placing an entangling two-qubit gate on non-

connected qubits requires finding an optimal route between these two qubits and placing

SWAP gates between all pairs of adjunct qubits in this route, where each SWAP gate can be

implemented using three CNOT gates (1). As the two-qubit gates are significantly noisier than

single-qubit gates, the goal of quantum circuit synthesis is usually to optimize the number of

CNOT gates or the CNOT depth of the constructed circuit.

CNOT circuits (that is, circuits that only consist of CNOT gates) appear as common build-

ing blocks of general quantum circuits. For instance, they are common subcircuits produced

by variational-quantum-eigensolver (VQE) algorithms used for quantum chemistry, quantum

simulation and quantum optimization (see, e.g. (2)). CNOT circuits also appear when study-

ing Clifford operators, (3) shows that any Clifford operator can be implemented in the form

721

722 Linear circuit synthesis using weighted Steiner trees

−CX−CZ−P−H−P−CZ−CX−, which includes two CX-layers (that is, two CNOT sub-

circuits). Thus, it should not be surprising that the problem of synthesizing and optimizing

CNOT circuits has received a lot of attention in the quantum computing literature.

The problem of synthesizing a CNOT-circuit of width n can be viewed as the problem of

reducing a matrix in GL2(n) to the identity matrix using Gaussian elimination (see section 2

for details), with the additional restriction that row operations can only be performed between

rows corresponding to connected qubits. Two algorithms for this task are described in (4–6),

which are both heuristic algorithms that aim to minimize the number of CNOT gates. The

SteinerGauss algorithm (4; 5) is based on reducing first a matrix in GL2(n) to a lower-

triangular matrix and then to the identity matrix. The RowCol algorithm (6) is based on

eliminating one qubit at a time. Crucially, both works rely on the computation of Steiner

trees between various sets of qubits to optimize the number of row operations for each basic

step of the algorithm (e.g., eliminating all non-diagonal 1s in the given column of a matrix).

In all of these works, Steiner tree optimization aims to minimize the number of edges needed

to connect a given subset of nodes. As the problem is NP-hard, in practice approximate

Steiner tree computation algorithms are used.

In general, at each step of the algorithm, multiple different optimal Steiner trees can be

found, with each tree leading to a different sequence of row operations and hence to a different

matrix obtained by executing these row operations. This work aims to improve the above

algorithms based on the intuition that it is beneficial to choose the tree that brings the matrix

“closer” to the target, the identity matrix. To this extent, we suggest assigning weights to

the edges of the connectivity graph and present a heuristic for doing so. This heuristic has

a low computational cost and can be easily used with any standard approximate Steiner

tree computation tool. Similar intuition and a related heuristic were described in (7) in the

context of phase polynomial synthesis. The experimental evaluation shows that the suggested

heuristic is beneficial and reduces the number of CNOT gates.

In addition, we improve the CNOT circuit depth compared to the RowCol and SteinerGauss

algorithms mentioned above. We note that for certain connectivity maps between the device

qubits, there are better known estimations. For all-to-all connectivity of the n qubits, where

every pair of qubits is connected, the depth of the CNOT circuit is bounded by n+O(log2(n))

(8; 9). For linear nearest neighbor connectivity of the n qubits the depth is bounded by 5n

(10). In (6) it was shown that for a two-dimensional grid connectivity of the n qubits, the

depth is O(n) with n2 ancillas. Recently, (11) extended the approach of (10) to handle blocks

of qubits arranged in a line, and in particular proved that the depth of the CNOT circuit

on the n-qubit grid is bounded by 4n (without using ancilla qubits). In some of the current

quantum devices, the connectivity between the qubits is a two-dimensional heavy hexagon,

into which one can embed a line or a sequence of blocks arranged in a line that includes all or

almost all of the qubits, obtaining an effective bound on the CNOT circuit depth. However,

such a bound is not known for all possible quantum device connectivity maps, and our results

provide a heuristic algorithm that improves the depth in general.

This paper is organized as follows. In Section 2, we describe the CNOT circuit synthesis

problem and the SteinerGauss and RowCol algorithms. In Section 3, we describe the weight

assignment heuristic and illustrate it with an example. Section 4 contains the experimental

evaluation. Section 5 concludes the paper.

Nir Gavrielov, Alexander Ivrii, and Shelly Garion 723

2 Preliminaries

Linear circuits Quantum circuits consisting only of CNOT gates are known as linear cir-

cuits or linear functions (12). The CNOT gate performs a controlled-not operation on two

qubits: CNOT (c, t) = (c, t ⊕ c), with c called the control qubit and t called the target

qubit. Hence, a CNOT gate between two qubits corresponds to a linear reversible function

f : F2
2 → F2

2, which is a 2× 2 binary invertible matrix. The CNOT gate is also universal for

linear reversible circuits, therefore any linear reversible function, i.e., any n×n matrix in the

GL2 (n) group, can be implemented using only CNOT gates. A single CNOT circuit gate,

controlled by wire i and acting on wire j 6= i, can be represented by the elementary matrix

Eij (equal to the identity matrix with component (i, j) flipped to 1). Composing a succession

of these operations one obtains a n × n parity matrix, representing a n-qubit linear circuit.

Row i of the matrix contains the parity output of qubit i, sum of those qubits with index j

such that the entry (i, j) of the matrix equals 1. Thus, given a random reversible operator M

we look for a sequence of m elementary matrices that satisfy(
m∏

k=1

Eik,jk

)
M = In ⇔

1∏
k=m

Eik,jk = M (1)

using E−1ij = Eij . A circuit containing CNOT operations corresponding to the sequence of

elementary matrices (Eik,jk)
1
k=m implements the function M . For example, the linear circuit

in figure 1 can be represented by

G5
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


G4

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


G3

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


G2

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


G1

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 =

M
0 0 1 1
1 0 1 1
0 1 1 1
0 1 0 1


(2)

Since two-qubit gates are prone to hardware errors, a synthesis algorithm will aim to

reduce the total amount of operations, known as the circuit size. A second key metric is the

resulting circuit depth, corresponding to the number of timestamps required to execute the

circuit, assuming that independent gates are performed simultaneously.

q0 :q0 : •
q1 :q1 : •

G2 G5
•

q2 :q2 :
G1 G4

•
q3 :q3 :

G3
•

Fig. 1. A linear circuit with depth 4 and 5 CNOT gates, corresponding to the 5 elementary
operations in Eq. (2).

Steiner Trees A coupling map of a quantum processor is usually represented using an

undirected graph G = (V,E) where V is a set of vertices (qubits) and the edges E denote the

coupling between adjacent qubits. Such graph has at most one edge connecting each pair of

724 Linear circuit synthesis using weighted Steiner trees

nodes (not a “multi-graph”) and no self-loops, i.e. edges with the same node on both ends.

The edges of a graph can be given a numerical weight by some rule, making it a weighted

graph. A tree is an undirected graph in which any two vertices are connected by a unique

path - a connected graph with no loops. A spanning tree of a connected graph is a tree

subgraph that includes all the vertices of G. Each graph may contain many spanning trees

and those with minimal overall edge weight are called minimal spanning trees (MST). Given

a graph G = (V,E) and a set of vertices S, a Steiner Tree T = (VT , ET) is a minimal weight

tree subgraph that contains all the vertices in S. The nodes in S are often called terminals

and those in VT \ S are known as Steiner nodes. The problem of finding an optimal Steiner

tree in an arbitrary graph is known to be NP-hard (13). Our work uses the rustworkx graph

package (14), therefore to find a Steiner tree we used their method based on the (2 − 2/|S|)
approximate algorithm from (15). A special kind of Steiner tree used is a decreasing Steiner

tree, in which each node is larger than its children according to a certain input ordering of

the vertices.

Steiner tree based synthesis of linear circuits We briefly describe the state-of-the-art

algorithms SteinerGauss and RowCol for the synthesis of linear circuits in quantum devices

with restricted connectivity. The algorithms start with a linear invertible binary matrix and

aim to optimize the number of row operations (adhering to the connectivity of the device)

that reduce the matrix to the identity or to a permutation matrix.

The SteinerGauss (4; 5) algorithm first reduces the original matrix to an upper triangular

matrix. The matrix M is brought into the upper triangular form column after column. When

processing a column i, one considers the set S = {i}∪ {k| k > i and Mk,i = 1} corresponding

to the diagonal entry of Mi,i together with the column’s 1-entries below the diagonal. These

entries are then connected using an (approximated) Steiner tree, which is then used to perform

a sequence of row operations that result in Mi,i = 1 and Mk,i = 0 for all k > i. In the second

step, the matrix M is reduced to the identity matrix. This is achieved by transposing the

matrix (to become lower-triangular) and applying the algorithm from the previous step with

one important change required to preserve the lower-triangular form: only decreasing Steiner

trees can be used.

The RowCol algorithm (6) follows a somewhat different matrix simplification strategy. This

algorithm is presented as Algorithm 2 (without the gray highlighted text). RowCol processes

one node of V after another, each time fully simplifying both the relevant column and the

relevant row of M . Given a node i ∈ V , in lines 3–6 of the algorithm the diagonal element Mi,i

is turned to 1 and all non-diagonal elements in column i are turned to 0. This is similar to the

first step of SteinerGauss, except that all the 1 entries in column i are considered. In lines

8–11 all the non-diagonal elements in row i are turned to 0. To do so, the algorithm finds a

linear combination of rows that is equal to the target row plus the relevant unit vector. These

vertices are added to the target row, using Steiner trees to guide how the rows are added. At

this point Mi,i = 1 and Mi,k = Mk,i = 0 for all k 6= i. On line 12 the vertex i is removed

from the graph, and the process continues until the graph becomes empty.

Nir Gavrielov, Alexander Ivrii, and Shelly Garion 725

Input : Integer n, matrix M ∈ Fn×n
2 , graph (V,E) where |V | = n,

weight function w : Fn×n
2 × E → R≥0

Output: Row additions to transform M into I
1 for i ∈ V which is not a cut vertex do

2 UpdateEdgeWeight (M, G,w)
3 S = {j|Mji 6= 0} ∪ {i}
4 Find a tree T containing S ⊆ V in G
5 Postorder traverse T from i. When reaching j with parent k, add row j to row k if

Mji = 1 and Mki = 0
6 Postorder traverse T from i, add every row to its children when reached

7 UpdateEdgeWeight (M, G,w)
8 Let S′ ⊆ V that

∑
j∈S′ Mj = Mi + ei

9 Find a tree T ′ containing S′ ∪ {i}
10 Preorder traverse T ′ from i. When reaching j /∈ S′, add the j-th row to its parent
11 Postorder traverse T ′ from i, add every row to its parent when reached
12 Delete i from graph G

13 end
Fig. 2. Weighted RowCol, weighted edges optimization extension of the RowCol algorithm. Similar
adjustment can be used in SteinerGauss or any other Steiner tree based algorithm.

3 Method

We propose a heuristic method for weighting the edges of the coupling graph during a synthesis

algorithm, which leads to a reduced total number of CNOT gates in the transpiled circuit. In

the linear function synthesis task, one aims to transform a general binary matrix to the identity

using row operations. Since the atomic operator in the process is the addition of two binary

rows of the matrix, we look for a function that given two such vectors assigns a scalar weight.

A successful choice of a function of this kind will result in edges representing the number of

CNOT gates added upon their choice, and the optimal Steiner tree will include edges that

minimize the total number of gates added in the current step of the algorithm. However, such

a function is hard to find, as there is no exact quantitative measure connecting the linear

function matrix to the number of gates in the final circuit. Furthermore, after obtaining

an optimal tree, the mentioned algorithms apply many additions in both directions, that is,

parent-to-child and vice versa, actions that have to be taken into account when assigning a

weight. Therefore, we turn to heuristic methods. We use the Hamming distance, standard

measure of difference between binary arrays, defined for x, y ∈ Fn
2 as h (x, y) =

∑n
i=1 xi 6= yi,

with the distance from the zero array called the Hamming weight. Intuitively, as our target

In is a sparse matrix, we will prefer operations that minimize the Hamming weight of row

operations. Even though the addition manifests itself as the binary XOR operation, we explore

a wider choice of operations for the weight function and pick the best one as described below.

Other operations might yield better results, since after tree selection a complex sequence of

row additions is performed. We treat all the qubits symmetrically, therefore every entry in the

vector will be calculated by the same rule, limiting the choice to all 2-bit operations. The usage

of undirected graphs adds another constraint, 01 and 10 inputs must have the same output.

726 Linear circuit synthesis using weighted Steiner trees

A quick count shows that there are only 23 = 8 candidates, including the irrelevant constant

0 function (ZERO) and the constant 1 function (ONE), which is equivalent to the unweighted

case. More complex heuristic rules, such as bidirectional weights and parameterized scaling,

did not affect the overall synthesis.

Eventually, given a parity matrix M ∈ GL2 (n) and an edge e = (u, v), the weight is given

by

wf (M, e = (u, v)) = h (f (Mu,Mv)) (3)

where f is one of the functions listed in table 1. Therefore, when we come to use any linear

synthesis algorithm, we have several options for the weighting heuristic. In order to compare

the varying rules, we “pre-train” to find the ideal one, using a cost function estimating the

average CNOT count of an algorithm utilizing a specific rule. Given a set of graphs G and a

weight heuristic wf calculate

cost (f) =
∑
G∈G

1

|G|2
〈CNOT count (G,M,wf)〉M∈Psamp(G) (4)

where Psamp (G) is a set of random linear functions to synthesize on the graph G and |G|
is its cardinality. The function CNOT count (G,M,wf) returns the number of gates in the

synthesized circuit and 〈...〉 is used to average the count over all input matrices in Psamp (G).

The idea is to find the best rule for different architectures, circuit widths, and linear functions.

Normalization |G|−2 is used to cancel the cost quadratic scaling in |G|, to provide a similar

contribution from all graph sizes.

Table 1. Two-bit operations used for the weight function and their corresponding cost estimation.

3 possible different inputs yielding a total of 23 = 8 possible binary functions. The ZERO function

assigns zero weight to all edges and is thus irrelevant for our purposes, and the ONE function is
equivalent to an unweighted algorithm as all edges will hold the same weight. The cost function

from Eq. (4) was evaluated by averaging synthesis over 100 random matrices for each of 6 graphs
- grid and all-to-all architectures (low and high connectivity) with 9, 49, and 81 qubits. The

uncertainty in the cost evaluation is 0.1 gates per qubit count squared for all entries.

input
function

ZERO AND XOR OR NOR NXOR NAND ONE

00 0 0 0 0 1 1 1 1
01/10 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1

RowCol cost - 4.1 3.6 3.6 3.8 3.8 3.5 3.7
SteinerGauss cost - 4.1 3.7 3.7 4.0 4.0 3.8 3.8

An illustration of the suggested heuristic is depicted in table 2, in which we compare the

steps of the augmented RowCol algorithm with the NAND heuristic to the steps of the original

RowCol algorithm for a certain example. A similar weighting method has been proposed in

(7) for phase polynomial synthesis, but differs from our work both in the problem it aims to

solve and in the specific edge weighting. In their work, for each parity, they create a complete

directed graph with the relevant qubits, then weight the edges according to e = (u, v) ,M ∈
Fn×m
2 → w (e,M) = h (Mu ⊕Mv)− h (Mv), and find a minimal spanning tree.

In order to update the weights, after each iteration, one should traverse all edges of the

coupling map and perform an operation with a time complexity of O (|V |). Consequently,

Nir Gavrielov, Alexander Ivrii, and Shelly Garion 727

Table 2. Illustration of the method. Operation of the RowCol algorithm on the same linear

function and coupling map, with (left) and without (right) the heuristic. In each step of the

process, the state of the parity matrix and the graph is presented, the terminal nodes are in gray
and the chosen Steiner tree edges are colored in red. After eliminating the first 2 columns and rows,

it is seen that the weighted algorithm has made larger progress, in terms of hamming distance

from I6, and used smaller trees. The weighted algorithm synthesis ended with a circuit containing
18 CNOTs, 9 less than the unweighted one. For brevity, the remaining steps are shown in the

appendix.

Step Weighted Unweighted

Col 0


1 0 0 1 1 0
0 0 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
0 1 0 0 1 1




1 0 0 1 1 0
0 0 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
0 1 0 0 1 1



Row 0


1 0 0 1 1 0
0 0 1 0 1 1
0 1 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 1 0




1 0 0 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1
0 1 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1



Col 1


1 0 0 0 0 0
0 0 1 0 1 1
0 1 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 1 0




1 0 0 0 0 0
0 1 0 1 0 1
0 1 1 1 1 1
0 1 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1



Row 1


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1
0 0 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 0




1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1
0 0 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 0



Col 2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 1 1 1 1
0 0 1 1 0 1
0 0 1 0 1 1



728 Linear circuit synthesis using weighted Steiner trees

the resulting complexity overhead of the heuristic is a polynomial addition of (|V | · |E|) for a

coupling graph with |V | nodes and |E| edges. To continue with the RowCol example, for an

n-qubit circuit, the algorithm performs n iterations, the computationally heaviest operation

in each being the Steiner tree search. Given that the approximate tree search complexity is

O (|S| (|V | log |V |+ |E|))(15), the enhanced program asymptotic runtime is

O

 |V |︸︷︷︸
#iterations

·

|V | · |E|︸ ︷︷ ︸
wt.track

+ |S| (|V | log |V |+ |E|)︸ ︷︷ ︸
SteinerTree


 = O

(
|V |4

)
(5)

which is equal to the complexity of the original RowCol algorithm.

4 Results

We now turn to present the performance results of the method for the two different algorithms

RowCol and SteinerGauss. As described in the Method section, we first looked for the optimal

weight rule by minimizing the cost function in (4). In this ”pre-training” process, we found the

NAND rule optimal for RowCol with an average cost of 3.5 gates per qubit number squared,

and for the SteinerGauss algorithm the OR heuristic yielded the optimal result, as can be

seen in the bottom part of table 1. Intuitively, since in the RowCol algorithm, one performs

row eliminations by linear combinations of other rows, reducing the number of dependent

rows will lead to better results. Therefore, the NAND operation, which favors cancellation of

the overlapping entries 1, was found to perform best. In figure 4 we depict the average CNOT

count of the algorithms, for various device connectivity architectures and sizes, showing a

substantial improvement for the weighted algorithms.

Since the method requires enough Steiner tree possibilities within the graph to make a

difference, the more connected the device, the larger the circuit size reduction. Our results

show a negligible change for the heavy-hex architecture which is within the error bounds, a

slight 1% boost given a grid of qubits, and up to more than 10% smaller circuits on complete

graphs. To quantify this claim, in figure 5a we present the synthesis performance as a function

of the connectivity of the graph. On a (fixed) 25-qubit device initially containing only chain

nearest neighbor edges, we compare the synthesis of the same matrices as we add randomly

selected connecting edges. Clearly, the weighted algorithm uses the higher connectivity more

intelligently. The improvement is even greater when we look at the depth metric within the

simulation mentioned, as seen in figure 5b. We explain this gap by the fact that during the

unweighted algorithm the lowest (by index) Steiner nodes are chosen repeatedly, while the

weight analysis forces a more diverse choice, which opens the possibility for parallel gates

and lower overall synthesis depth. Naturally, the performance of the algorithms depends

on the input linear circuit properties as well. We have trialed random input circuits with an

increasing number of CNOTs and analyzed the properties of the re-synthesized circuits. From

figure 7a (7b) we infer that the more CNOTs in the input circuits, the larger the reduction

in the size (depth) of the output circuits. This gain reaches saturation since the GL2(n)

group contains a finite number of unique operations, many of the two-qubit operations in

input circuits of large size cancel each other out, and the average synthesis cost approaches a

constant value.

Nir Gavrielov, Alexander Ivrii, and Shelly Garion 729

0 20 40 60 80 100 120

Number of physical qubits

0

2500

5000

7500

10000

12500

15000

17500

M
e
a
n

C
N
O
T

co
u
n
t

Weight Heuristic Benchmarking heavy hex

W. RowCol

RowCol

(a) heavy-hex architecture. A decreasing Steiner
tree is not always feasible in these graphs, there-
fore SteinerGauss is not evaluated. In this case,
the weighted and unweighted points are indistin-
guishable.

0 20 40 60 80 100

Number of physical qubits

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
a
n
C
N
O
T

co
u
n
t

Weight Heuristic Benchmarking grid

W. RowCol

RowCol

W. SteinerGauss

SteinerGauss 0.20%

0.30%

0.40%

0.50%

0.60%

0.70%
RowCol weights improvement

(b) 2D grid

0 20 40 60 80 100

Number of physical qubits

0

1000

2000

3000

4000

5000

M
e
a
n
C
N
O
T

co
u
n
t

Weight Heuristic Benchmarking barbell

W. RowCol

RowCol

W. SteinerGauss

SteinerGauss
0.0%

2.0%

4.0%

6.0%

8.0%RowCol weights improvement

(c) barbell, a graph containing 2 complete sub-
graphs connected by a path of 1 or 2 edges

0 20 40 60 80 100

Number of physical qubits

0

1000

2000

3000

4000

5000

6000
M

e
a
n
C
N
O
T

co
u
n
t

Weight Heuristic Benchmarking a2a

PMH bound

W. RowCol

RowCol

W. SteinerGauss

SteinerGauss

PMH 2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

RowCol weights improvement

(d) All-to-All connectivity, with Patel-Markov-
Hayes(PMH)(12) results as comparison. PMH
result for 100 qubits is 8175 ± 27, and has been
omitted for clarity

Fig. 4. Benchmarking. Each marker represents an average result over one hundred reversible
matrices of the same size, standard deviations are around tens of gates thus not visible. Markers
are grouped by algorithm (symbol) and weights (color). The weighted RowCol algorithm uses

the NAND heuristic, while the SteinerGauss results shown are with the OR rule. The blue

dashed line together with the right axis represents the weighted version improvement, calculated

by 1 −
〈

CNOTcount(G,M,wNAND)
CNOTcount(G,M,wconst)

〉
.

5 Conclusion

In this paper, we present a general heuristic to improve Steiner tree algorithms. The pro-

posed approach has been tested on the RowCol and SteinerGauss algorithms, improving

their performance on varying architectures and linear functions. Our benchmarking showed

that the heuristic is most useful in cases where the graphs are highly connected or where

large circuits need to be synthesized. In addition, the complexity overhead of the heuristic

is minimal, making it suitable for real-world applications. This work lays the foundation for

future algorithms that can be built upon the proposed heuristic, adjusting the assignment of

730 Linear circuit synthesis using weighted Steiner trees

50 100 150 200 250

No. of edges

300

400

500

600

700

800
M

e
a
n
C
N
O
T

co
u
n
t

Connectivity dependency RowCol; 25 qubits

Weighted

Unweighted

(a) size

50 100 150 200 250

No. of edges

125

150

175

200

225

250

275

300

M
e
a
n
D
e
p
th

Connectivity dependency RowCol; 25 qubits

Weighted

Unweighted

(b) depth
Fig. 6. synthesis performance as a function of the coupling map connectivity

0 50 100 150 200 250 300

CNOT count original circuit

0

50

100

150

200

250

300

C
N
O
T

co
u
n
t
sy

n
th

e
si
ze

d

Circuit size dependency RowCol; 25 qubits

y=x

Weighted

Unweighted

(a) size

0 50 100 150 200 250 300

CNOT count original circuit

0

50

100

150

200

250

D
e
p
th

sy
n
th

e
si
ze

d

Circuit size dependency RowCol; 25 qubits

Weighted

Unweighted

(b) depth
Fig. 8. input circuit CNOT count dependency. In all of these simulations, the coupling map is

fixed to be a complete graph with 25 qubits. Each point represents the average result over 100
random parity matrices with the same amount of row operations (sometimes annulling) on the

identity.

the weights to new optimization tasks and methods in the field.

Acknowledgements

The authors thank Lev Bishop, Eli Arbel, Simon Martiel, Ali Javadi-Abhari, and Dmitri

Maslov from IBM Quantum for fruitful discussions and support. We also thank Arianne

Meijer - van de Griend for the code and explanation of the SteinerGauss algorithm.

References

[1] Gushu Li, Yufei Ding, and Yuan Xie, Tackling the qubit mapping problem for nisq-era

quantum devices, ASPLOS ’19, page 10011014, New York, NY, USA, 2019. Association

for Computing Machinery.

[2] Sukin Sim, Peter D. Johnson, and Aln Aspuru-Guzik, Expressibility and entangling

capability of parameterized quantum circuits for hybrid quantum-classical algorithms,

Advanced Quantum Technologies, 2(12):1900070, 2019.

Nir Gavrielov, Alexander Ivrii, and Shelly Garion 731

[3] Dmitri Maslov and Martin Roetteler Shorter stabilizer circuits via bruhat decomposition

and quantum circuit transformations, CoRR, abs/1705.09176, 2017.

[4] Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. Quantum circuit optimizations for

nisq architectures Quantum Science and Technology, 5(2):025010, mar 2020.

[5] Aleks Kissinger and Arianne Meijer, Cnot circuit extraction for topologically-

constrained quantum memories, Quantum Information and Computation, 20:581–596,

06 2020.

[6] Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, and Xi-

aoming Sun, Optimization of cnot circuits on limited-connectivity architecture, Phys.

Rev. Res., 5:013065, Jan 2023.

[7] Vivien Vandaele, Simon Martiel, and Timothée Goubault de Brugière, Phase polyno-

mials synthesis algorithms for nisq architectures and beyond, Quantum Science and

Technology, 7(4):045027, sep 2022.

[8] Dmitri Maslov and Ben Zindorf, Depth optimization of cz, cnot, and clifford circuits,

IEEE Transactions on Quantum Engineering, 3:1–8, 2022.

[9] Timothée Goubault de Brugière, Marc Baboulin, Benot Valiron, Simon Martiel, and

Cyril Allouche, Reducing the depth of linear reversible quantum circuits, IEEE Trans-

actions on Quantum Engineering, 2:1–22, 2021.

[10] Samuel A. Kutin, David Petrie Moulton, and Lawren Smithline, Computation at a

distance, Chic. J. Theor. Comput. Sci., 2007.

[11] Timothée Goubault de Brugière, and Simon Martiel, Shallower CNOT circuits on real-

istic quantum hardware, arXi2303.07302, 2023.

[12] Ketan N. Patel, Igor L. Markov, and John P. Hayes, Optimal synthesis of linear re-

versible circuits, Quantum Info. Comput., 8(3):282294, mar 2008.

[13] Richard M. Karp, Reducibility among Combinatorial Problems, pages 85–103, Springer

US, Boston, MA, 1972.

[14] Matthew Treinish, Ivan Carvalho, Georgios Tsilimigkounakis, and Nahum Sá, rust-

workx: A high-performance graph library for python. Journal of Open Source Software,

7(79):3968, nov 2022.

[15] Kurt Mehlhorn, A faster approximation algorithm for the steiner problem in graphs,

Information Processing Letters, 27(3):125–128, 1988.

Appendix A End of Illustration

In this appendix, we present the remaining elimination steps of the example presented in

the main text, depicted in table A.1. The resulting circuits of this synthesis example appear

in figure A.2

732 Linear circuit synthesis using weighted Steiner trees

Table A.1. Remaining steps of the example from table 2

Step Weighted Unweighted

Row 2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 0 0
0 0 0 1 1 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 1 0



Col 3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 0 0
0 0 0 1 1 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 1 1 0



Row 3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 1 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 1 0



Col 4


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 0



Row 4


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1



Nir Gavrielov, Alexander Ivrii, and Shelly Garion 733

q0 :q0 : •
q1 :q1 : • •
q2 :q2 : • • •
q3 :q3 : • • •
q4 :q4 : • • • • • •
q5 :q5 : • • •

(a) weighted

q0 :q0 : •
q1 :q1 : • • • •
q2 :q2 : • • •
q3 :q3 : • • • • • •
q4 :q4 : • • • • • • • • •
q5 :q5 : • • • •

(b) unweighted

Fig. A.2. Resulting circuits

	Introduction
	Preliminaries
	Method
	Results
	Conclusion

