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This work investigates the relationships between quantum state synthesis complexity

classes (a recent concept in computational complexity that focuses on the complexity
of preparing quantum states) and traditional decision complexity classes. We especially

investigate the role of the synthesis error parameter, which characterizes the quality of

the synthesis in quantum state synthesis complexity classes. We first show that in the
high synthesis error regime, collapse of synthesis classes implies collapse of the equivalent

decision classes. For more reasonable synthesis error, we then show a similar relationships

for BQP and QCMA. Finally, we show that for quantum state synthesis classes it is in
general impossible to improve the quality of the synthesis: unlike the completeness and

soundness parameters (which can be improved via repetition), the synthesis error cannot

be reduced, even with arbitrary computational power.
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1 Introduction

While quantum complexity theory traditionally investigates the complexity of decision prob-

lems (i.e., Boolean functions), a recent line of research [1, 2, 4, 9, 8, 10] started investigating

the complexity of constructing quantum states, a task called quantum state synthesis. Those

prior works showed that the behavior of quantum state synthesis complexity classes is often

similar to the behavior of decision complexity classes: the equality PSPACE = QIP [5] has its

state synthesis equivalent statePSPACE = stateQIP [10, 8], the equality QCMA = QCMA[1, 12 ]

[6] has the equivalent stateQCMA = stateQCMA[1, 12 ] [4], and the equality QIP = QIP(O(1))

[11] has the equivalent stateQIP = stateQIP(O(1)) [9].

In order to further investigate the relationships between quantum state synthesis com-

plexity classes and decision complexity classes, in this paper we introduce a new definition of

quantum state synthesis complexity classes in which we allow an arbitrary number of target

states per input (prior definitions required exactly one target state per input). Our definition

is closer to the definition of classical functional classes like FP or FNP introduced in [7] and
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thus more closely related to Boolean classes and languages. We stress that this new definition

is a generalization of the definitions of prior works: we recover the previous definitions as a

special case by requiring one target state per input.

Based on this new definition, we further explore the relationship between quantum state

synthesis complexity classes and decision complexity classes. Here are our main contributions:

(1) We investigate the relationship between the class BQP and the corresponding quan-

tum state synthesis complexity class denoted relationalStateBQPδ. Here δ ∈ [0, 1] is

a parameter called the synthesis error parameter that characterizes the imprecision of

the synthesis (the goal is to have δ as small as possible). Theorem 1 shows that if we

take δ very close to 1, i.e., if we allow exponentially small fidelity between the ouput

and the state we want to synthesize, there exists a tight relationship between BQP and

relationalStateBQPδ. This relationship remains true for other complexity classes (e.g.,

QMA and relationalStateQMAδ, or QCMA and relationalStateQCMAδ).

(2) This above result yields the question of proving relationships between quantum state

synthesis complexity classes and decision complexity classes for more reasonable values

of the parameter δ. We make a first step in this direction. We especially investigate

how proving separations for quantum state synthesis classes relates to proving sepa-

rations for decision complexity classes. We first observe that BQP 6= QMA implies

relationalStateQMAδ 6⊆ relationalStateBQPδ for all δ (Proposition 3) and BQP 6= QCMA

implies relationalStateQCMAδ 6⊆ relationalStateBQPδ for all δ (Proposition 4). Our

main contribution (in Theorem 2) proves the converse for the case of QCMA (with

a small loss in δ): if there exist δ and a polynomial q such that relationalStateQCMAδ 6⊆
relationalStateBQPδ+1/q, then BQP 6= QCMA. These results suggest that progress on

understanding decision complexity classes can be done by investigating quantum state

synthesis classes.

(3) We finally investigate whether the synthesis error parameter δ can be reduced, i.e.,

whether the quality of the synthesis can be increased, just like completeness and sound-

ness can be improved via repetition. We show that for quantum state synthesis classes

this is in general impossible: we prove (see Corollary 1) that relationalStateBQPδ 6⊂
relationalStateBQPδ−ε holds for any ε > 0. We actually prove in Theorem 3 that reduc-

ing δ is impossible even if we allow arbitrary computational power. This result holds for

the definitions used in prior works as well and shows the importance of the parameter δ

when defining state synthesis complexity classes. This result is closely related to the

impossibility of error reduction for unitary synthesis problems of [2, Proposition 3.8],

but it is stronger in the sense that there is no gap between the source and target errors.

2 Definition of relational state synthesis complexity classes

We first recall the definition of classical functional classes [7]. In this work, we always use the

binary alphabet Σ = {0, 1}.
Definition 1 (FP, FNP, TFNP) A relation R ⊆ Σ∗×Σ∗ is in FP iff there exists a polynomial-

time Turing machine M such that if there exists y ∈ Σ∗ such that (x, y) ∈ R then M(x) outputs

such a y, and otherwise M(x) rejects.
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A relation R ⊆ Σ∗ × Σ∗ is in FNP iff there exists a polynomial-time Turing machine M

such that if there exists y ∈ Σ∗ such that (x, y) ∈ R then there exists w ∈ Σ∗ such that

M(x,w) outputs such a y, and otherwise, for any w ∈ Σ∗, M(x,w) rejects.

A relation R ∈ FNP is in TFNP iff ∀x ∈ Σ∗,∃y ∈ Σ∗, (x, y) ∈ R.

The relations for state synthesis are a bit more complex since we have to specify the output

space for every input size.

Definition 2 (State synthesis relation) For n ∈ N, let Hn be a Hilbert space and On be

the set of density matrices over Hn. A state synthesis relation is a triple (R,Lyes, Lno) where

(Lyes, Lno) is a promise language and

R = {(x, ρ) | x ∈ Lyes, ρ ∈ Sx}

for non-empty subsets Sx ⊆ O|x|. We often omit the language. We simply use R to denote

the state synthesis relation, we write Lyes
R = Lyes, Lno

R = Lno and LR = Lyes ∪Lno and define

xR := {ρ ∈ O|x| | (x, ρ) ∈ R}

for any x ∈ LR (note that xR /∈ ∅ for any x ∈ Lyes
R and xR = ∅ for any x ∈ Lno

R ). We also

define a function kR : N→ N that gives the number of qubits of Hn.

The quantum circuits considered in this paper are bounded in size and uniform. We give

formal definition of these notions.

Definition 3 (Polynomial-size family of circuits) A family of quantum circuits (Cn)n∈N
is said to be polynomial-size if there exists a polynomial p such that for any n ∈ N, Cn contains

at most p(n) gates.

Definition 4 (Uniform family of circuits) A family of quantum circuits (Cn)n∈N is said

to be polynomial-time-uniform, or simply uniform, if there exists a Turing machine M working

in polynomial-time such that for any n ∈ N, M(n) outputs a description of Cn.

Due to the continuity of the space of quantum states, we need a measure and a threshold

to quantify the tolerated error on the state synthesis. We use the trace distance between

density matrices, and extend it to a distance between a density matrix and a set of density

matrices.

Definition 5 (Trace distance) Let ρ and σ be two density matrices on the same space.

Define

td(ρ, σ) :=
1

2
Tr

(√
(ρ− σ)†(ρ− σ)

)
.

For a density matrix ρ and a set S of density matrices over the same space, define

td(ρ, S) := min
σ∈S

td(ρ, σ).

In this work we consider families of circuits Cn taking some classical input x and possibly

some other input ψ (for a witness). We denote by Cx(ψ) the circuit C|x|(xψ). The circuit has

a specific qubit that is measured at the end of the computation. The measurement outcome

is called the acceptance bit and denoted by Cacc
x (ψ). When there is an output channel, we

denote by Cout
x (ψ) the quantum state outputted on this channel. Note that this state depends

on the value of the acceptance bit. We denote by C
out|acc
x (ψ) the quantum state outputted
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on this channel when Cacc
x (ψ) = 1. When there is no witness we remove ψ from all these

notations, e.g., we use write the acceptance bit simply as Cacc
x .

We are now ready to introduce relational state synthesis complexity classes.

Definition 6 (relationalStateBQP) Let c, s, δ:N→ [0, 1] be completeness, soundness and syn-

thesis error functions. A state synthesis relation R is in relationalStateBQPδ[c, s] if there exists

a uniform family of polynomial-size quantum circuits (Cn)n∈N such that for x ∈ LR:

• completeness: if xR 6= ∅ then Pr
(
Cacc
x = 1

)
≥ c(|x|) and td(C

out|acc
x , xR) ≤ δ(kR(|x|)).

• soundness: if xR = ∅ then Pr
(
Cacc
x = 1

)
≤ s(|x|).

Definition 7 (relationalStateQMA) Let c, s, δ:N → [0, 1] be functions. A state synthesis re-

lation R is in relationalStateQMAδ[c, s] if there exists a uniform family of polynomial-size

quantum circuits (Cn)n∈N such that for x ∈ LR:

• completeness: if xR 6= ∅ then there exists a quantum witness ψ such that Pr
(
Cacc
x (ψ) =

1
)
≥ c(|x|).

• soundness: for any ψ, if both xR 6= ∅ and td(C
out|acc
x (ψ), xR) > δ(kR(|x|)) hold then

Pr
(
Cacc
x (ψ) = 1

)
≤ s(|x|); and if xR = ∅ then Pr

(
Cacc
x (ψ) = 1

)
≤ s(|x|).

The definitions used in the previous papers [10, 8, 9, 2, 4] do not involve relations since ex-

actly one output is expected per input. We rephrase the definition of stateBQP and stateQMA

from [4] by using our definitions of relationalStateBQP and relationalStateQMA.

Definition 8 (stateBQP, stateQMA) For any c, s, δ:N→ [0, 1], stateBQPδ[c] = {R ∈ relationalStateBQPδ[c, 0] |
∀x ∈ LR, |xR| = 1},
stateQMAδ[c, s] = {R ∈ relationalStateQMAδ[c, s] | ∀x ∈ LR, |xR| = 1}.

We define the class relationalStateQCMA similarly to relationalStateQMA but with a re-

striction to witnesses being states in the computational basis (i.e., classical strings). We

also define a class relationalStateR corresponding to states synthesized by arbitrary (uniform)

quantum circuits (this class can be seen as the equivalent of the class R of recursive languages

in decision complexity theory):

Definition 9 (relationalStateR) Let c, s, δ:N→ [0, 1] be completeness, soundness and synthe-

sis error functions. A state synthesis relation R is in relationalStateRδ[c, s] if there exists an

unboundedly powerful Turing machine such that for any n ∈ N, M(1n) halts and outputs the

description of a quantum circuit Cn such that for x ∈ LR:

• completeness: if xR 6= ∅ then Pr
(
Cacc
x = 1

)
≥ c(|x|) and td(C

out|acc
x , xR) ≤ δ(kR(|x|)).

• soundness: if xR = ∅ then Pr
(
Cacc
x = 1

)
≤ s(|x|).

Finally, we show that the gap between the completeness and the soundness can be ampli-

fied for these classes. For relationalStateBQP, relationalStateQCMA and relationalStateQMA,

the proof of gap amplification of [4] applies directly since it amplifies the completeness and

soundness while preserving the target state:
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Proposition 1 (Gap amplification) Let 0 ≤ c(n), s(n), δ(n) ≤ 1 be poly-time computable

functions such that c(n)−s(n) ≥ 1/poly(n). For any polynomial p, relationalStateBQPδ[c, s] ⊆
relationalStateBQPδ[1− 2−p, 2−p]

relationalStateQCMAδ[c, s] ⊆ relationalStateQCMAδ[1− 2−p, 2−p]

relationalStateQMAδ[c, s] ⊆ relationalStateQMAδ[1− 2−p, 2−p].

Since we have an amplification for completeness and soundness, having completeness 2/3 and

soundness 1/3 is equivalent to having completeness c(n) and soundness s(n) with c(n)−s(n) ≥
1/poly(n). We thus define relationalStateBQPδ = relationalStateBQPδ[2/3, 1/3],

relationalStateQCMAδ = relationalStateQCMAδ[2/3, 1/3],

relationalStateQMAδ = relationalStateQMAδ[2/3, 1/3].

A gap amplification result for the class relationalStateR is also easy to show:

Proposition 2 (Gap amplification) Let 0 ≤ c(n), s(n), δ(n) ≤ 1 be computable functions

such that c(n) > s(n). For any computable function γ(n) > 0,

relationalStateRδ[c, s] ⊆ relationalStateRδ[1− γ, γ].

Proof. The amplification is very similar to the standard amplification for decision circuits

by repetition: We repeatedly apply the synthesis circuit until we get Cacc
x = 1. As soon at

this happens, we stop and output the output state of the last repetition. If we do not get

Cacc
x = 1 after a specified number of interactions (depending on c, s and γ), we decide that

xR = ∅ (note that there is no need to output a quantum state in this case). �

3 High synthesis error regime

State synthesis classes defined in Section 2 are closely related to decision languages. In

Theorem 1 below we show a basic relationship between these two notions when the synthesis

error is close to 1. While for concreteness we focus on the relationship between the classes BQP

and relationalStateBQPδ, the results proved in this section remains true for other complexity

classes (e.g., QMA and relationalStateQMAδ, QCMA and relationalStateQCMAδ, or QIP and

relationalStateQIPδ) as well.

We start with the following lemma, which holds for any δ.

Lemma 1 For any δ : N→ [0, 1] and any state synthesis relation R, if R ∈ relationalStateBQPδ
then LR ∈ BQP.

Proof. Take R ∈ relationalStateBQPδ. Let (Cn)n∈N denote the family of circuits from

Definition 6. By ignoring the output state of the circuits and considering only their acceptance

qubit, they become decision circuits that have acceptance probability Pr(Cacc
x = 1). If x ∈

Lyes
R then Pr(Cacc

x = 1) ≥ 2/3 by completeness as a state synthesis circuit. If x ∈ Lno
R , which

means that xR = ∅, then Pr(Cacc
x = 1) ≤ 1/3 by soundness as a state synthesis circuit. Thus

LR ∈ BQP. �

Next, we show a tight relationship between quantum state synthesis classes and decision

complexity classes when δ = 1− 2−n, i.e., when we allow exponentially small fidelity between

the output and the state we want to synthesize. The idea is to generate the same maximally

mixed state on any input.

Theorem 1 Consider the function δ0:n 7→ 1−2−n. Then for any state synthesis relation R,

R ∈ relationalStateBQPδ0 iff LR ∈ BQP.
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Proof. From Lemma 1 we immediately get that R ∈ relationalStateBQPδ0 implies

LR ∈ BQP.

Now suppose that LR ∈ BQP and let (Cn)n∈N be a uniform family of circuits recognizing

LR with completeness 2/3 and soundness 1/3. A maximally mixed state ρn on kR(n) qubits

can be synthesized by a uniform family of polynomial-size circuits because kR ∈ poly. Since

ρn is at distance at most 1 − 2−kR(n) from any other density matrix, the circuit C ′n that

outputs C ′accn = Cacc
n and C ′outn = ρn synthesizes R with completeness 2/3, soundness 1/3

and error δ0. Thus R ∈ relationalStateBQPδ0 . �

4 Relationship between decision and state synthesis classes

In this section we investigate the relationship between proving separations for quantum state

synthesis classes and proving separations for decision complexity classes. The results of this

section hold for any value of the synthesis error parameter δ. Our main result is Theorem 2,

which shows that a separation for quantum state synthesis classes can be used to prove a

separation for decision complexity classes.

First, as a consequence of Lemma 1, we show the following result:

Proposition 3 If BQP 6= QMA then

relationalStateQMAδ 6⊆ relationalStateBQPδ′

holds for any δ, δ′ ∈ [0, 1].

Proof. Suppose that there exist δ, δ′ such that the inclusion relationalStateQMAδ ⊆
relationalStateBQPδ′ holds. For L = (Lyes, Lno) ∈ QMA, there exists a family of circuits

(Cn)n∈N that takes a quantum witness and recognizes L with completeness 2/3 and soundness

1/3. For each n ∈ N we can build a circuit C ′n that introduces a 1-qubit output channel and

“copies” the contents of the acceptance qubit to the output channel using a CNOT gate:

[2,nwires=2,bundle=1]Cn[wires = 3, steps = 3, style =

innersep = 2mm, dashed, linewidth = 0.2mm, roundedcorners]circuitC’n [alternate]

[alternate] [alternate]

1 acc

0 out

Define the relation R by xR = {11} if x ∈ Lyes and xR = ∅ if x ∈ Lno. Since (C ′n)n∈N
synthesizes R, we get

R ∈ relationalStateQMA0 ⊆ relationalStateQMAδ ⊆ relationalStateBQPδ′ .

By Lemma 1, we get L ∈ BQP and thus QMA ⊆ BQP. �
By replacing the quantum witness by a classical witness in Proposition 3 we similarly

obtain the following result:

Proposition 4 If BQP 6= QCMA then

relationalStateQCMAδ 6⊆ relationalStateBQPδ′ .

holds for any δ, δ′ ∈ [0, 1].

Now using a technique similar to the proof that P = NP iff FP = FNP [3] we are able to

show the following converse statement, which is the main result of this section.
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Theorem 2 If there exist some δ ∈ [0, 1] and some polynomial q such that

relationalStateQCMAδ 6⊆ relationalStateBQPδ+1/q,

then BQP 6= QCMA.

The proof of Theorem 2 will show the contrapositive: we will show that BQP = QCMA

implies that relationalStateQCMAδ ⊆ relationalStateBQPδ+1/q holds for any δ ∈ [0, 1] and any

polynomial q. In order to prove this statement, we first show (in Proposition 5 below) that if

BQP = QCMA then we can efficiently “guess” the witness of the circuit synthesizing a relation

in relationalStateQCMA. For conciseness, we will write

fp(`, n) = 1− 2−n − `

p(n)2
.

for a polynomial p : N→ N and any integers `, n.

Proposition 5 (Guessing a classical witness) Let R be a relation in the complexity class

relationalStateQCMAδ[1− 2−n, 2−n] for some δ > 0, and (Cn)n∈N be the corresponding family

of quantum circuits synthesizing R. Let p be a polynomial such that the circuit Cn acts on less

than p(n) qubits, and `(n) be the length of the classical witness it receives. If BQP = QCMA,

then there exists a polynomial-time quantum algorithm that receives as input a string x ∈ Lyes
R

and outputs with probability at least (1− 2−n)`(n) a string w ∈ {0, 1}`(n) such that

Pr(Cacc
x (w) = 1) ≥ fp(`(n) + 1, n)

holds.

We use the following lemma to prove Proposition 5.

Lemma 2 For any polynomial p : N → N, the promise language GWp := (GWyes
p ,GWno

p )

defined below is in QCMA. GWyes
p := {(C, x,w0) | {C describesaquantumcircuittaking ≤ p(|x|)qubitsasinput|x|+ |w0| < p(|x|)∃w,Pr(Cacc(xw01w) = 1) ≥ fp(|w0|, |x|)}

GWno
p := {(C, x,w0) | {C describesaquantumcircuittaking ≤ p(|x|)qubitsasinput|x|+ |w0| < p(|x|)∀w,Pr(Cacc(xw01w) = 1) ≤ fp(|w0|+ 1, |x|).}

Proof. For any n ∈ N, consider the following verification circuit. The circuit receives

as input (C, x,w0) and w as classical witness. It simulates C(xw01w) and accepts iff this

simulation accepts.

Completeness. If (C, x,w0) ∈ GWyes
p then there exists w such that

Pr(Cacc(xw01w) = 1) ≥ fp(|w0|, |x|)

holds.

Soundness. If (C, x,w0) ∈ GWno
p , then for any w, the inequality

Pr(Cacc(xw01w) = 1) ≤ fp(|w0|+ 1, |x|)

holds.

Since fp(|w0|, |x|) − fp(|w0| + 1, |x|) is lower bounded by an inverse-polynomial function

of the input length, we conclude that GWp ∈ QCMA. �
We are now ready to give the proof of Proposition 5. Proof of Proposition 5. Assume

that BQP = QCMA. Let A be a polynomial-time quantum algorithm deciding GWp ∈
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BQP[1 − 2−n, 2−n], where GWp is defined in Lemma 2. Consider the following quantum

algorithm that receives x ∈ Lyes
R as input. The algorithm constructs bit by bit a classical

witness w = w1...w`(n) by defining the bit wi as follows: if A on input (Cn, x, w1...wi−1)

accepts then set wi = 1, otherwise set wi = 0.

This running time of this algorithm is polynomial. We now show its correctness. Consider

a string x ∈ Lyes
R . In the analysis below, we assume that V does not make any error (i.e.,

always decides correctly membership in GWp during the `(n) iterations), which happens with

probability at least (1− 2−n)`(n).

For conciseness, for any q ∈ [0, 1] we say that a string w̄ ∈ {0, 1}`(n) is a q-witness if

Pr(Cacc
x (w̄)) ≥ q

holds. For conciseness again, we write below f(i) instead of fp(i, n).

We show by induction on i that for each i ∈ {0, . . . , `(n)} the following property Pi holds

at the end of the ith iteration (or at the very beginning of the algorithm for i = 0): there

exists an f(i+ 1)-witness starting with w1 . . . wi. Property P`(n) then implies the correctness

of our algorithm.

Property P0 is obviously true: from the completeness of Cn we know that there exists at

least one f(0)-witness.

Assume now that the property Pi−1 is true for some i ∈ {1, . . . , `(n)}, i.e., there exists an

f(i)-witness starting with w1 . . . wi−1. If there exists an f(i)-witness starting with w1 . . . wi−11

then (Cn, x, w1...wi−1) ∈ GWyes
p , which means that A on input (Cn, x, w1...wi−1) accepts and

we correctly set wi = 1. Otherwise there exists an f(i)-witness starting with w1 . . . wi−10.

If there is no f(i + 1)-witness starting with w1 . . . wi−11 then (Cn, x, w1...wi−1) ∈ GWno
p ,

which means that Algorithm A rejects and we correctly set wi = 0; otherwise the output

of A (and the value of wi) can be arbitrary, which is fine since in this case there exist both

an f(i+ 1)-witness starting with w1 . . . wi−11 and an f(i)-witness starting with w1 . . . wi−10.

Since f(i+ 1) ≥ f(i), an f(i)-witness is an f(i+ 1)-witness. In all cases Property Pi is thus

satisfied. �
We can now apply Proposition 5 to prove Theorem 2.

Proof of Theorem 2. We show the contrapositive: we show that BQP = QCMA implies

that for any δ ∈ [0, 1] and any polynomial q, the class relationalStateQCMAδ is included in

relationalStateBQPδ+1/q.

Assume that BQP = QCMA and take any relation R ∈ relationalStateQCMAδ[c, s] with

c(n) = 1 − 2−n and s(n) = 2−n. Let (Cn)n∈N denote the circuit synthesizing R with com-

pleteness c, soundness s and synthesis error δ, let `(n) be the length of the classical witness Cn
receives and let p1(n) be the number of qubits that Cn takes as input. Let p be a polynomial

such that p(n) ≥
√

2q(n)(`(n) + 1) and p(n) ≥ p1(n) hold. Let C ′n be the circuit obtained by

first applying the circuit corresponding to the algorithm of Proposition 5 to guess a witness w

and then simulating Cn(xw). In the following, let X be the random variable that gives the wit-

ness w guessed by C ′x, and for conciseness let d = td(C
′out|acc
x , xR), dw = td(C

out|acc
x (w), xR)

and δ = δ(kR(n)).

Completeness. Suppose that xR 6= ∅, i.e., x ∈ Lyes
R . Then by Proposition 5 we obtain

Pr(C ′accx = 1) ≥ (1− 2−n)`(n) · fp(`(n) + 1, n)
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= ≥ 1− `(n)2−n(1− 2−n)`(n)︸ ︷︷ ︸ (1− 2−n − `(n)+1
p(n)2

)
≥ 1− (`(n) + 1)2−n − `(n)+1

p(n)2

≥ 1−2log(`(n)+1)−n− 1
2q(n) =: c′(n), where the last inequality holds since we chose a polynomial

p satisfying p(n) ≥
√

2q(n)(`(n) + 1).

Denote pδ = Pr(dw ≤ δ) =
∑
dw≤δ Pr(X = w). Since c’(n) ≤ Pr(C ′accx = 1)

=
∑
dw>δ

Pr(X = w)≤ s(n)Pr(Cacc
x (w) = 1)︸ ︷︷ ︸+

∑
dw≤δ Pr(X = w)≤ 1Pr(Cacc

x (w) = 1)︸ ︷︷ ︸
≤ s(n) + pδ, we have d ≤

∑
w Pr(X = w)dw

≤
∑
dw≤δ Pr(X = w)≤ δ dw︸︷︷︸+

∑
dw>δ

Pr(X = w)≤ 1 dw︸︷︷︸
≤ δ≤ 1 pδ︸︷︷︸+ 1−≥ c′(n)− s(n) pδ︸︷︷︸
≤ δ + 1− c′(n) + s(n)

≤ δ + 2log(`(n)+1)−n + 1
2q(n) + 2−n

≤ δ + 1
q(n) when 2log(`(n)+1)−n + 2−n ≤ 1

2q(n) , which holds when n is large enough.

Soundness. Suppose that xR = ∅, i.e., x ∈ Lno. Then by soundness of Cn, whatever the

witness w guessed, the acceptance probability is small:

Pr
(
C ′accx = 1

)
=
∑
w

Pr(X = w)≤ s(n)Pr(Cacc
x (w) = 1)︸ ︷︷ ︸ ≤ s(|x|).

Since c′(n)− s(n) ≥ 1/poly(n), we obtain the inclusion R ∈ relationalStateBQPδ+1/q. �
Theorem 2 yields the question of achieving the same result with a quantum witness (i.e.,

the converse of Proposition 3).

Open question 1 Does relationalStateQMAδ 6⊆ relationalStateBQPδ+1/p for some δ : N →
[0, 1] and polynomial p : N→ N imply BQP 6= QMA?

The technique of guessing a quantum witness by using the assumption BQP = QMA

could not be used here (except if QCMA = QMA) because using this technique would mean

that there is a way to create a valid QMA witness by using classical information and with a

polynomial-size circuit.

5 Impossibility to reduce the synthesis error

In this section we prove that it is impossible to reduce the synthesis error for the class

relationalStateBQP. Here is the main result:

Theorem 3 For any 0 < ε(n) ≤ δ(n) ≤ 1− 2−n and 0 ≤ s(n) < c(n) ≤ 1,

relationalStateBQPδ[1, 0] 6⊂ relationalStateRδ−ε[c, s].

Theorem 3 shows the impossibility to reduce δ even when arbitrary computational power

is available and even without a gap between c and s. The following is a straightforward

corollary:

Corollary 1 For any 0 < ε(n) ≤ δ(n) ≤ 1− 2−n,

relationalStateBQPδ 6⊂ relationalStateBQPδ−ε.



Hugo Delavenne and Franois Le Gall 763

Procedure P

1. Apply the circuit Crr on the initial state 0⊗r.

2. Measure the qubit corresponding to the acceptance bit. Let b ∈ {0, 1} denote the
outcome.

3. Measure the output channel in the computational basis. Let z ∈ {0, 1}k(r) denote
the outcome.

Fig. 1. Procedure P

This result holds for any class, as long as it is possible to synthesize the maximally mixed

state. It holds for the definitions used in prior works as well, even when considering only the

inputs in unary [10, 8, 4] as we actually do in the proof of Theorem 3.

Proof of Theorem 3.

We use a diagonal argument to construct a family of strings that cannot be generated with

non-trivial probability, and then use it to construct quantum states that can be approximated

by a mixed state with error δ but such that generating it with error strictly smaller than δ

implies that the family of strings can be generated with non-trivial probability.

Constructing strings from a diagonal argument. Since we are considering uniform

families of quantum circuits (i.e., families of quantum circuits generated by Turing machines)

we can enumerate them. Let C1, C2, . . . be such an enumeration and for each r ∈ N, let

Cr = {Crn}n∈N denote the circuits in the family.

For any r ∈ N, we focus on the circuit Crr , i.e., we take n = r (as usual in diagonal

arguments). Let k(r) denote the number of qubits of the output channel of the circuit Crr .

Consider the procedure of Figure 1, which we call Procedure P.

For any string z ∈ {0, 1}k(r), let p(z) denote the probability of obtaining z at Step 3

conditioned on getting b = 1 at Step 2. From a straightforward counting argument, there is

at least one z such that

p(z) ≤ 2−k(r).

We denote this string (or one of them, chosen arbitrarily, if there are more than one) by ur.

Constructing the relation. For each n ∈ N, define the quantum state

ρδn =
∑

z∈{0,1}k(n)

αzzz,

where

αz = { 2
−k(n)

+ δ(n)ifz = un, 2
−k(n) − 1

2−k(n) − 1
δ(n)otherwise.

Define the relation Rδ = {(0n, ρδn) | n ∈ N}. Note that the maximally mixed state on k(n)

qubits is at distance δ(n) from ρδn. Since the maximally mixed state can be generated by a

polynomial-size circuit with probability 1, we get

Rδ ∈ relationalStateBQPδ[1, 0].
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Impossibility to generate the relation with error < δ. Suppose that there exists a

uniform circuit family that synthesizes Rδ with error δ−ε < δ and completeness and soundness

c > s. From Proposition 2 we can assume without loss of generality that c(n) ≥ 1− γ(n) for

some (computable) function γ such that

0 < γ(n) < 1− 2−k(n)

2−k(n) + ε(n)
.

Let Cr = {Crn}n∈N be this family, for some r ∈ N. Apply Procedure P described above on

the circuit Crr .

Consider p(ur), the probability of obtaining the string ur at Step 3 of the procedure condi-

tioned on getting b = 1 at Step 2. Observe that measuring the state ρδr in the computational

basis gives outcome ur with probability

2−k(r) + δ(r).

By completeness, the probability that Crr accepts and generates a state at distance at most

δ(r)−ε(r) from ρδr is greater than 1−γ(r). We thus have p(ur) ≥ (1− γ(r))
(
2−k(r) + δ(r)−

(
δ(r)− ε(r)

))
= (1− γ(r))

(
2−k(r) + ε(r)

)
> 2−k(r), which is impossible by the construction of ur. �
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