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Entanglement-assisted quantum error-correcting codes can be seen as a new-type of quan-
tum error-correcting codes and can be constructed from arbitrary linear codes which
should not satisfy the dual-containing condition by utilizing shared entangled states
between the sender and the receiver in advance. In this paper, we construct several
new classes of entanglement-assisted quantum maximum-distance-separable codes from
constacyclic codes and cyclic codes by exploiting small pre-shared entangled states, re-
spectively. These codes are new in the sense that they are not covered by the codes
available in the literature.

Keywords: Entanglement-assisted quantum error-correcting codes, Constacyclic codes,
Cyclotomic coset, MDS codes
1 Introduction

Quantum error-correcting(QEC) codes are used to decrease unnecessary decoherence in quan-
tum computation and quantum communication. In quantum coding theory, the major task
is to acquire optimal QEC codes with desired parameters. As we know, QEC codes can be
constructed from classical linear codes that satisfy the dual-containing (or self-orthogonality)

766



Hangyu Liu, Sujuan Huang, Liqgi Wang, and Shizin Zhu 767

condition [5]. However, many classical linear codes with high performance could not be used
to construct QEC codes due to such limitation. In 2002, Bowen [2] found that both quan-
tum and classical communication capacity can be increased by using pre-shared entangled
states between the sender and the receiver. In 2006, entanglement-assisted quantum error-
correcting(EAQEC) codes were proposed by Brun et al. [3], which can be constructed from
non-dual-containing quaternary linear codes. Later, Galindo et al. [12] generalized it to an
arbitrary finite field. From then on, many scholars have taken a big step towards constructing
EAQEC codes with good parameters in [4, 10, 11, 25, 26, 35, 47].

Suppose that ¢ is a prime power, representing a g-ary EAQEC code by [[n, k, d; ¢]]4, which
encodes k information qudits into n channel qudits and can correct up to L%J errors with
the help of ¢ pairs of maximally pre-shared entangled states, where d is the minimum distance
of the EAQEC code. To be specific, assume that L is the space of linear operators defined on
the Hilbert space H. Considering the isometric operator U: H®™ — H®"2 and its completely
positive, trace preserving(CPTP) map U : L™ — £O72 defined by U(p) = UpUT. As shown
in [4], quantum communication scenario involves two spatially separated parties, Alice and
Bob, having the following resources at their disposal:

e a noisy quantum channel defined by a CPTP map N : £®* — L£®" taking density
operators on Alice’s system to density operators on Bob’s system:;

e the c ebit state |®)®¢ shared between Alice and Bob.

Via the above resources, Alice wishes to send k qubits to Bob perfectly. An [[n,k,d;c]]
EAQEC code contains

e an encoding map & : L& @ L& — L&
e a decoding map D : L& ® L& — L&k

with Do N o & oV = id®*, where V is the isometry that appends the state |®)®¢. Namely,
V]g) = |¢)|®)®¢, and id is the identity map from £ to £ on a single qubit.

Actually, when ¢ = 0, it is an [[n, k, d]]; QEC code. The performance of an EAQEC code
can be measured by its rate % and net rate k;c. Analogous with quantum Singleton bound,
Brun et al. [3] proposed EA-quantum Singleton bound for EAQEC codes. However, Grassl
[14] gave some examples of EAQEC codes to show that such bound is incomplete. It holds
just under the case d < %“[24]. The specific bound is as follows:

Theorem 1: [1, 3, 15, 24](EA-quantum Singleton bound) Let C be an [[n, k,d; ¢]]; EAQEC
code. If d < "T"‘Q, then its parameters satisfy

n+c—k>2(d-1),

where 0 < ¢ < n—1. Particularly, if the equality is achieved, then C is called an entanglement-
assisted quantum maximum-distance-separable(EAQMDS) code.

Although we do not need to consider the dual-containing conditions of linear codes in the
construction of EAQEC codes, it is difficult to determine the number of maximally pre-shared
entangled states systematically. Untill now, there are two main techniques to determine such
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number. One is through decomposing the defining sets of constacyclic codes[8, 36], and the
other is through computing the hull dimensions of linear codes[16]. In addition to these two
methods, scholars have constructed many EAQEC codes with a variety of parameters via
linear complementary dual(LCD) codes, generalized Reed-Solomon(GRS) codes, extended
GRS codes, Goppa codes, and matrix-product codes(see [13, 27, 31, 32, 38, 39, 41] and the
relevant references therein).

Because of the nice algebraic structure of constacyclic codes, including cyclic codes and
negacyclic codes, they have been applied extensively to the construction of EAQEC codes.
In [29, 30], Li et al. proposed the decomposition of defining sets of cyclic codes and many
EAQMDS codes with large minimum distances were constructed. Later, the authors [8, 36]
extended such method to general constacyclic codes, and many classes of EAQMDS codes
of length n dividing ¢®> — 1(see, for example [8, 19, 28, 33, 34, 36, 37, 40, 44, 45, 48]) or
q® + 1(see, for example[8, 9, 20, 36, 37, 42, 43, 46]) have been constructed. In [6], Chen et
al. obtained some new classes of EAQMDS codes of length é:rl, where a = t2 +1,t > 2

2 2
g +1 q°+1
o and =
’+1
b)

is a positive integer, which contains the EAQMDS codes of lengths ‘12;' L

Recently, Huang et al. [18] constructed some new classes of EAQMDS codes of length
where p = a? + (a + 1), a > 2 is a positive integer, which contains the EAQMDS codes of
length %. Some known EAQMDS codes of lengths that divide ¢ + 1 are listed in Table 1.

In this paper, taking advantage of decomposing the defining sets of constacyclic codes and
cyclic codes over F,2, we first determine the number of pre-shared entangled states ¢ and
then construct some new classes of EAQMDS codes of length q%l with a = 4h? + (4h +1)?,
a=h>+Bh+1)% a=(h+1)2+ (3h+2)?% and a = (2h + 2)? + (4h + 3)2, where h is a
positive integer.

The entire work is organized as follows. Some related basic knowledge about constacyclic
codes (including cyclic codes) and EAQEC codes are reviewed in Section 2. In Sections 3,
4, 5 and 6, some new classes of EAQMDS codes with small pre-shared entangled states are
derived from constacyclic codes and cyclic codes, respectively. In Section 7, we conclude the
paper.

2 Preliminaries

Let F,> denote the Galois field with q* elements, and FZQ denote the multiplicative group

consisted of the nonzero elements of F,2

¢*» Where ¢ is a prime power. For any two vectors

x = (20,1, Tn-1),Y = (Y0,Y1s---Yn—-1) € Fy2, their Hermitian inner product is defined
as
n—1
(x, y)n = Z ziyi = woyy + T1yi + o+ Tp1yp_g-
i=0

A g¢%-ary linear code C of length n with dimension & and minimum distance d, denoted as
[n, k,d],2, is a k-dimensional linear subspace of F;E. The Hermitian dual code of C is

Ctr={xe Frel(x,y)n =0, for all y € C},

which is a (n — k)-dimensional linear code. If C+» C C, then C is known as a Hermitian
dual-containing code.
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Suppose that ged(n,q) = 1, and 5 € F. with order r, ie., ord(n) = r. For any ¢ =
(co,C1y--vyCne1) € Fi2 with the polynomial representation c(r)=co+cix+ - +cp1a™

an n-constacyclic shift of ¢ is defined by

o(c) =o(co,c1y. v yCn—1) = (NCn—1,€0y- -+, Cn—2).

If o(c) € C for all ¢ € C, then C is called an n-constacyclic code of length n over F, 2, which
Fq2 [z]
(l‘n_

g(z) of 2™ —n in F2[z] such that C = (g(«)). The polynomial g(x) is the so-called generator
polynomial of C and the dimension of C is n — deg(g(x)).

Let ord,,(q?) = m, i.e., m is the multiplicative order of ¢ modulo rn, then there exists
a primitive rn-th root of unity £ € Fgom such that £” = 7. So all the roots of ™ — 1 can be
expressed as £ where i = 0,1,...,n — 1. Let Q = {1+ ri|0 < i < n — 1}. The defining
set of an n-constacyclic code with generator polynomial g(z) is defined as

T ={j eQlg(¢) =0},

and the defining set of Ct* is T+ = Q\ (—¢T), where —qT = {rn — qj|j € T}.
For any e € Q, the ¢?-cyclotomic coset of e modulo rn is given by

C. = {eq* (mod rn)|0 <1< 1, —1},

can be also seen as an ideal in the principal ideal ring . Hence, there is a monic divisor

where I, is the smallest integer satisfying eq®'c = e (mod rn). It is clear that T is a union of

some ¢>-cyclotomic cosets and dim(C) = n — |T'|, where |T'| means the cardinality of the set
T. For a constacyclic code C, its minimum distance satisfy the following well-known bound.

Lemma 1: [21] (BCH bound for constacyclic codes) Assume that ged(g,n) = 1, ord(n) = r,
and ¢ is a primitive rn-th root of unity. Let C be an n-constacyclic code of length n over F ..
If the generator polynomial g(z) of C has the elements {£1+77 | 0 < j < 6§ — 2} as its roots,
then the minimum distance of C is at least 9.

The following result provides a criterion for determining whether C is a Hermitian dual-
containing code or not.

Lemma 2: [22] Assume that C is an 7-constacyclic code of length n over F 2 with defining
set T, then C*+» C C if and only if T N (—qT) = 0.

Let ¢ be an odd prime power, and a be an odd integer with a|(¢® + 1), then n = £+l

a

is even. Assume that w is a primitive element of the finite field F 2, and 7 = w?~!. Then

7>

r =ord(n) = ¢+ 1. From Lemma 3.12 in [22], we obtain the following result.

Lemma 3: Let n = q:“, s = ‘122—+1, and a be an odd integer. Then all cyclotomic cosets
.2, . 1

modulo (¢ 4+ 1)n containing 1+ (¢ + 1)i are Cy = {s}, C’Si%n ={s=+ %n}, Co—(g+1)i =

{s=(¢g+1)i,s+ (¢+1)i} for 1 <i< & —1.

The relationship between the cyclotomic cosets Cs and C _ oy, is as follows.

Lemma 4: Let ¢ be an odd prime power, n = q%l with a being odd, and s = #. Then



Hangyu Liu, Sujuan Huang, Liqgi Wang, and Shizin Zhu 773

_qcs =C

—gtl,.
s—4=n

Proof:

—qgs=—(q+1)s+s

a—1 1
S 1)s — = 1
" (q+1)s Cl(q+ )s+s

a—1 @ +1 @ +1

=-——5(¢+1)
=s5— q—gln(mod (g + )n),

1
—§(q+1) +s

which implies that —qCs = C,_q41,,. O
2
If » = 1, then an n-constacyclic code is indeed the cyclic code of length n over Fz2. There
is a similar result as Lemma 3, which was obtained in [23].

Lemma 5: [23] Let n = qz(jl, s = 5, where a is an odd integer, and ¢ is an odd prime power.
Then all cyclotomic cosets modulo n containing integers from 0 to n are Cy = {0}, Cs = {s},
C;={i,—i}for1 <i<s—1.

Similar to the proof of Lemma 4, we also have the following result.

2
Lemma 6: Let n = 1

Then —qCy = Cs.

, 8 = 5, where a is an odd integer, and ¢ is an odd prime power.

For any n € Fg2, the conjugate of 7 is defined as § = 7% Let H = (ai;)n—r)xn be
the parity-check matrix of C over Fp» with 1 <4 < n—k and 1 < j < n. Then the
conjugate transpose matrix of H is defined as Hf = (@i)nx (n—k)- As we know, the key in
the constructions of EAQEC codes is to calculate the number of pre-shared entangled states.
According to [3, 47], the following method was used to calculate such number.

Theorem 2: [3, 47] Let C be a ¢*-ary linear code of length n over F 2 with parity-check matrix
H(;,—k)xn- Suppose that ¢ = rank(HHT), where H' is the conjugate transpose matrix of H. If
C has parameters [n, k, d] 2, then there is an EAQEC code with parameters [[n, 2k—n+-c, d; c]],.

3 New EAQMDS codes of length n = £+ with a = 4h2 + (4h + 1)?

In this section, we will construct some new EAQMDS codes of length n = q%l with a =
4h? + (4h + 1)% from cyclic codes and constacyclic codes, respectively, where ¢ is a prime
power of the form g = (2¢t — 1)a & (10h + 2), and ¢, h are positive integers.

3.1 New EAQMDS codes derived from cyclic codes

In this subsection, we will construct some new EAQMDS codes of length n = ‘12—“ with
a = 4h? + (4h + 1)? from cyclic codes. We first consider the case ¢ = (2t — 1)a — (10h + 2).

3.1.1 The case ¢ = (2t — 1)a — (10h + 2)
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Define

Fk) = [2h(k +1) + g + 2h — (4h + 1)(k — 1) "

a

Lemma 7: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 2, where
a=4h?+ (4h+1)%, h > 2, and t is a positive integer. Suppose that n = %, s=75. IfCis
a cyclic code of length n over Fj2 with defining set T = Ule Cs—i, where 1 <6 < f(1) — 1,
then C+» C C.

Proof: By Lemma 2, one obtains that C*» C C if and only if 7N (—qT') = (). Supppose that
T N (—qT) # O, then there exist two integers 4, j, where 1 < 4,5 < f(1) — 1, such that
s —i=—q(s—j)¢*(mod n), £=0,1.
(I) If £=0, then s —i = —¢q(s — j)(mod n). Since —qCs = C§, one can obtain
ai + aqj = 0(mod ¢* +1). (2)

As a < aiyaj < (4h + 1)q + 2h — a, for the convenience of the discussion, we divide aj
into the following four cases.

(i) If a <aj < 2q—4h — 1, then

ai+aqj > a+ aq,
ai+aqj <2(¢* +1)+2h —a—2,

thus,
0 < ai+aqj <2(¢®>+1).

When ai +aqj = ¢>+1, Eq. (2) can be met. We express ai in the form ai = ug +v.
If t = 1, then @ > ¢g. Hence, due to the value range of ai, u,v are within the
cases: (u=1,a-¢g<v<qg—-1;12)2<u<4h-1,0<0v<qg—-1; (3)
u=4h,0<v<qg+2h—a. Ift>2 then a < q. Hence, due to the value range
of ai, u,v are within the cases: (1) u =0, a <v <q¢g—1;(2) 1 <u < 4h -1,
0<v<qg—1;3)u=4h,0<v<qg+2h—a. Thus ai+ aqj = (aj + u)q + v. By
the division algorithm, it must be ¢ = aj + u, which is impossible due to the form of
g=(2t—1)a—(10h+2)(If aj +u = (2t —1)a— (10h+2), then v must be a —10h —2,
which contradicts to the cases (1), (2) and (3)).

(ii) If mg <aj < (m+ 1)g —4h — 1, where 2 < m < 4h — 1. Then one can obtain that

ai+aqj > m(¢* +1)+a—m,
ai+aqi < (m+1)(F+1)+2h—a—m—1,

thus,
m(g® +1) < ai +agqj < (m+1)(¢* + 1),

which is a contradiction.
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(iii) If mg — 4h < aj < mq — 1, where 2 < m < 4h — 1. Then one can obtain that

ai +aqj > m(q®> + 1) + a — 4hqg — m,
ai +aqj < m(q® + 1) + 4hqg + 2h — m — a,

thus,
(m—1)(¢*> +1) < ai+aqj < (m+1)(¢*> +1).

When ai + aqj = (aj +u)q +v = m(q®> + 1), Eq. (2) can be met. By the division
algorithm, it must be mq = aj + u, which is impossible due to the form of ¢.

(iv) If 4hg — 4h < aj < (4h + 1)q + 2h — a, then one can obtain that
ai + aqj > 4h(¢* + 1) + a — 4h — 4hgq,
ai+aqj < (4h+1)(¢* +1) = (a —6h —1)g—a —2h — 1,
thus,
(4h —1)(* +1) < ai +aqj < (4h +1)(¢*> + 1).
When ai + aqj = (aj +u)q +v = 4h(¢®> + 1), Eq. (2) can be met. By the division
algorithm, it must be 4hq = aj + u, which is impossible due to the form of q.
(IT) If £ =1, then s — i = —q(s — j)¢*(mod n), which is equivalent to
a(qj — i) = 0(mod ¢* + 1). (3)

It is easy to know that a < ai,aj < (4h+ 1)g+ 2h — a. Dividing the range of aj into the
following four cases.

(i) If a < aj < 2q, then one can get that

aqj —ai > (a —4h 4+ 1)q + a — 2h,
aqj —ai <2(¢*+1) —a -2,

thus,
0<aqj—ai <2(¢*+1).

When aqj —ai = ¢*> +1, Eq. (3) can be met. We express ai in the form ai = ug+v.
If t = 1, then a > ¢q. Hence, u, v are within the cases: (1) u=1,a—q<v<qg—1;
2)2<u<4h—-1,0<v<qg—1;3)u=4h,0<v<qg+2h—a. If t > 2, then
a < q. Hence, u, v are within the cases: (1) u=0,a<v<¢g—1;(2)1 <u <4h—1,
0<v<qg—1;3)u=4h,0<v<qg+2h—a. Thus aqj — ai = (aj —u)q+ v. By
the division algorithm, it must be ¢ = aj — u, which contradicts to the form of g.

(ii) ¥ mg+4h+1 < aj < (m+ 1)g, where 2 < m < 4h — 2, then one can get that

aqj —ai > m(¢* +1) +a —m — 2h,
agj —ai < (m+1)(+1)—a—m—1,
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thus,
m(¢® +1) <agqj —ai < (m+1)(¢* +1),
which is a contradiction.
(iii) If mg + 1 < aj < mq+ 4h, where 2 < m < 4h — 1, then one can get that
aqj — ai > m(q® +1) — 4hg —m — 2h + a,
aqj —ai < m(q® + 1)+ 4hg — m — a,
thus,
(m—1)(¢*>+1) <aqj —ai < (m+1)¢* + 1.

When aqj — ai = (aj — u)q +v = m(¢? + 1), Eq. (3) can be met. By the division
algorithm, it must be mq = aj — u, which contradicts to the form of ¢.

(iv) If (4h —1)g+4h+1<aj < (4h+ 1)q + 2h — a, then one can get that
aqj —ai > (4h —1)(¢> +1) + a + 1 — 6h,
aqj — ai < (4h +1)(¢* + 1) — (a — 2h)q —a — 4h — 1,
thus,
(4h —1)(* +1) < agqj —ai < (4h +1)¢® +1,

When aqj — ai = (aj —u)q +v = 4h(¢* + 1), Eq. (3) can be met. By the division
algorithm, it must be 4hq = 2aj — u, which contradicts to the form of q.

Therefore, we can deduce that T'N (—¢7T') = 0. Hence, C** C C holds. O

Lemma 8: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 2, where

_ Ap2 2 : PR _ 2’41 _
a = 4h? + (4h +1)%, h > 2, and t is a positive integer. Suppose that n = <=, and s = 7.

If C is a cyclic code of length n over F,> with defining set 1" = Uf:o Cs—_;, and parity-check
matrix H, then rank(HH') =1+ 4(k — 1), when
(D 0<d<f(l)-1,k=1;

(2) Fk—1) <0< f(k)—1, k=2,3.

Proof:

(1) When k =1, let C be a cyclic code of length n over F 2 with defining set T' = T} U T5,
where T} = C,, Th = Ule Cs—iy,and 1 < § < f(1) — 1. Let C; and Cs be two cyclic codes
with parity-check matrices H; and Hy and defining sets 77 and 75, respectively. Then
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Therefore,

H\HI H H]
HHET =171 172
(Hﬂqir HyH]

From Lemma 6, we have —qCs = C, thus rank(HlHI) = 1. From Lemma 7, we have
rank(HyHJ) = 0. As Ty N (—¢Ty) = 0, we have rank(HyH}) = rank(HyH]) = 0. Hence,
we can obtain that

rank(HH') =rank(H,H]) = 1.

When k£ = 2, let C be a cyclic code of length n over F > with defining set T' = T U T> U
T3 U Ty, where T7 = CS, T = U{:Ul)il Co_y, T3 = Cs_f(1)7 T, = U?:f(l)-&-l Csfi; and
f)+1<6< f(2)—1. Let Cq, Cq, C3 and C4 be cyclic codes with parity-check matrices
H,, Hy, H3 and Hy4, and defining sets T7, 15, T35 and Ty, respectively. Then

H,
H,
Hs |’
H,

which implies that

H\H| H\H} H\H! HH]
HyH| HyH} HyH! HyH]
HsH| HsH) HsHI HsH]
H,H| H,H} H,H! H,H]

HHT =

According to the above proof, rank(H HJ) = 1. As rank(HiH;) equals to the number
of elements in T; N (—¢T}). Hence, rank(H H}) = rank(H4H!) = 0, 'rank(HlHQT) =
rank(HzHD =0, rankz(HlH;,[) = rank(HgHif) =0, rank(Hng) = rank(H4H;r) =0,
rank(HQH;r) =0, rank(HgH;r) = 0.

As
—q(s + f(k))
- 2h(k+1)+1](¢®> + 1) — [2h(k + 1) + 1] + [2h — (4h + 1)(k — 1)]q
- [2h — (4h + 1)(k — 1)]g — 2h(k +1) — 1 (tmod ).

a
which 1mphes that —ch_f(k) = CS_[2)7,—(4h+1)(k—1)]q—2h(k+1)—1. Hence, rank(HgH;[) =
rank(HgH;r) =2.

Now we prove that rank(HyH}) = rank(H,HJ) = 0 and rank(H4H]) = 0. Supppose
that To N (—qTy) # 0, then there exist two integers i, j, where 1 <14 < f(1)—1, f(1)+1 <
Jj < f(2) — 1 such that

s —i=—q(s—j)¢*(mod n), £=0,1.
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(I) If £ =0, then s —i = —q(s — j)(mod n), which is equivalent to

a(i+ qj) = 0(mod ¢ +1). (4)

Asa<ai < (dh+1)g+2h—a, (4h+1)g+2h+a<aj < (6h+1)g—2h—1—a, we
divide aj into the following four cases:

(i)

(i)

If (4h+1)g+2h+a <aj < (4h+ 3)qg —4h — 1, then we can obtain

ai+aqj > (4h+1)(¢* + 1)+ 2h+a)g+a — 4h — 1,
ai+aqj < (4h+3)(¢* +1) —2h —a — 3,

thus,
(4h +1)(¢* + 1) < ai +aqj < (4h +3)(¢* + 1).

When ai + aqj = (4h +2)(¢*> + 1), Eq. (4) can be achieved. We express ai in
the form ai = ug 4+ v. If t = 1, then a > ¢. Hence, u,v are within the cases:
Du=1l,a—-qg<v<¢g—1;(2)2<u<4h—-1,0<v<qg-—1; (3) u=4h,
0<v<qg+2h—a. Ift>2, then a < q. Hence, u,v are within the cases:
Du=0,a<v<qg—12)1<u<4h—-1,0<v<qg-—1; (3) u = 4h,
0 <v<q+2h—a. Thus ai + agj = (aj + u)q + v. By the division algorithm,
it must be (4h + 2)q = aj + u, which is impossible due to the form of g.

If mg <aj < (m+1)g—4h—1, where 4h+3 < m < 6h — 1, then we can obtain
that

ai+aqj > m(q* +1) +a—m,
ai+aqi < (m+1)(+1)+2h—a—m—1,

thus,
m(g® +1) < ai +aqj < (m+1)(¢* + 1),

which is a contradiction.
If mg—4h < aj <mg—1, where 4h+3 < m < 6h — 1, then we can obtain that

ai + aqj > m(q® + 1) — 4hg —m +a,
ai +aqj < m(q® + 1) + 4hqg + 2h — m — a,

thus,
(m—1)(¢*> +1) < ai+aqj < (m+1)(¢*> +1).
When ai + aqj = (aj +u)g +v = m(q® + 1), Eq. (4) can be achieved. By the

division algorithm, it must be mq = aj + u, which is impossible due to the form
of q.
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(iv) If (6h — 1)g < aj < (6h + 1)g — 2h — 1 — a, then we can obtain that

ai+aqj > (6h —1)(¢> +1) +a—6h +1,
ai+aqj < (6h+1)(¢* +1) — (a —2h)qg —a — 4h — 1,

thus,
(6h —1)(¢* + 1) < ai +agj < (6h+ 1)(¢* + 1).

When ai + aqj = (aj +u)q + v = 6h(¢®> + 1), Eq. (4) can be achieved. By the
division algorithm, it must be 6hq = aj + u, which is impossible either.

(IT) If £ =1, then s — i = —q(s — j)¢*(mod n), which is equivalent to
a(gj — i) = 0(mod ¢* +1).
Similar to the above proof, such case is impossible either.

Similarly, we can prove that rank(H4H]) = 0.

In short,

rank(HH') =rank(HyH}) + rank(HyHJ) + rank(HsH}) = 5.

The proof of the remaining case is similar to the above proof, the desired results follow.[]

Theorem 3: Letn = C+L where q is an odd prime power with the form ¢ = (2¢t—1)a—10h—2,

a = 4h?+ (4h+1)2, h > 2, and t is a positive integer. Then there exist g-ary EAQMDS codes
with the following parameters:
(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2,3.

Proof: Let C be a cyclic code of length n over F > with parity-check matrix H. Suppose that
the defining set of C is given by T = U?:o Cs—;, where 0 < ¢ < f(3) — 1. Then C is generated
by the polynomial

g@)=(z—a*0) (-’ (w—a’)(z— ") (2 — ),

which implies that C consists of 2§ + 1 consecutive roots. Hence, the minimum distance
of C is at least 26 + 2 due to Lemma 1. Then C is a ¢?-ary cyclic code with parameters
[n,n — (20 +1),> 26 + 2]. By Lemma 8, rank(HH') = 1+ 4(k — 1), when

(D O0<d<f(l)-1,k=1;

(2) f(k—1) <6< f(k)—1,k=23.
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Table 2. Some new EAQMDS codes of length n = QQL;H with ¢ = (2t — 1)a — 10h — 2 and
a = 4h? + (4h + 1)? via cyclic codes

[[n, k, d; ]]q d is even
[[746, 749 — 2d, d; 1]]269 2<d<50
[[746, 753 — 2d, d; 5]]269 52 <d <72
[[746, 757 — 2d, d; 9]]269 74<d<94
[2210,2213 — 2d,d; 1]]463 2 <d < 86
[2210,2217 — 2d,d; 5]]46s 88 < d < 124
[2210,2221 — 2d,d; 9]]4e3 126 < d < 162
(146,149 — 2d, d; 1]]173 2<d<22
[[146,153 — 2d, d; 5]]173 24 < d <32
[[146, 157 — 2d, d; 9]]173 34 < d <42
i Il
I Il
i Il
i
I
i
[l
I
[l

a q n

97 269 746

463 2210

205 173 146

353 311 274 [[274,277 — 2d,d; 1]]511 2<d<30
274,281 — 2d, d; 5])s11 32<d< 44
274,285 — 2d, d; 9311 46 < d < 58
1723 8410 [[8410,8413 — 2d,d; 1]]1723 2 < d < 166

8410,8417 — 2d, d; 5)]1723 168 < d < 244
8410,8421 — 2d, d; 9] 1703 246 < d < 322
4562, 4565 — 2d, d; 1]]1571 2 < d < 122

4562, 4569 — 2d, d; 5]]1571 124 < d < 180

4562,4573 — 2d,d; 91571 182 < d < 238

I
I
I
541 1571 4562 1
I
I

Therefore, we can obtain g-ary EAQMDS codes with the above parameters from Theorem
2 and the EA-quantum Singleton bound. O

Example 1: In Table 2, we list some new EAQMDS codes of length # obtained from
Theorem 3, where ¢ is an odd prime power of the form ¢ = (2t — 1)a — 10h — 2, a =
4h? 4 (4h +1)%, h > 2, and t is a positive integer.

3.1.2 The case ¢ = (2t — 1)a + (10h + 2)

Define

[2h(k +1) +1)g = 2h + (4h + 1)k — 1)

f(k) =
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Similar to the discussion of the case ¢ = (2t —1)a — (10h+2), we have the following results.

Lemma 9: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h 4 2, where
a = 4h? + (4h + 1)2, and h, t are positive integers. Suppose that n = q2+1, s=15. IfCis

a

a cyclic code of length n over F 2 with defining set T = Ule Cs—i, where 1 < 6 < f(1) — 1,
then Ct» C C.

Lemma 10: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h + 2, where
a = 4h? + (4h +1)2, and h, t are positive integers. Suppose that n = %, s=5. IfCisa
cyclic code of length n over F,» with defining set T" = U?:o Cs_;, and parity-check matrix H,
then rank(HHT) =1+ 4(k — 1), when

M o<o<f)-L k=1

2) flk—1) <5< f(k)— 1k =2,3.

Theorem 4: Letn = £+ , where ¢ is an odd prime power with the form g = (2¢t—1)a+10h+2,

a

a = 4h? + (4h + 1)%, and h, t are positive integers. Then there exist g-ary EAQMDS codes
with the following parameters:

(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+ 4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2, 3.

Example 2: In Table 3, we list some new EAQMDS codes of length # obtained from
Theorem 4, where ¢ is an odd prime power of the form ¢ = (2t — 1)a + 10h + 2, a =
4h? + (4h +1)%, and h, t are positive integers.

3.2 New EAQMDS codes derived from constacyclic codes

Let n € FZQ and ord(n) = ¢+ 1. In this subsection, we are going to make use of n-constacyclic

codes to construct some new EAQMDS codes of length n = q2:17 where ¢ = (2t — 1)a £

(10h +2), a = 4h? + (4h + 1)2, and ¢, h are positive integers.

3.2.1 The case ¢ = (2t — 1)a — (10h + 2)

Define

(2h + 4kh + 3)q + 26h + 5 — k(8h + 2)

1) = >

(6)

Lemma 11: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 2, where
a=4h%* + (4h +1)%, h > 2, and t is a positive integer. Suppose that n = @7 s = q22—+1. If

a
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Table 3. Some new EAQMDS codes of length n = qi% with ¢ = (2t — 1)a + 10h + 2 and
a = 4h? 4 (4h + 1)2 via cyclic codes

205 647 2042 [[2042,2045 — 2d, d; 1]]647 2<d<82
2042, 2049 — 2d, d; 5)|g47 84 < d <120
2042, 2053 — 2d, d; )47 122 < d < 158
17186,17189 — 2d, d; 1]]1877 2 <d < 238
17186,17193 — 2d, d; 5]]1s77 240 < d < 348
17186,17197 — 2d, d; 91877 350 < d < 458
650,653 — 2d, d; 1]]503 2<d<46
650,657 — 2d, d; 5]]593 48 < d < 68
650,661 — 2d, d; 9]]503 70 <d <90

a q n n,k,d;cllq d is even
29 41 58 58,61 — 2d, d; 1]]41 2<d<14
58,65 — 2d, d; 5]]41 16 < d <20
58,69 — 2d, d; 9]]41 22 < d <26
157 850 850, 853 — 2d, d; 1]]157 2<d<54
850, 857 — 2d, d; 5]]157 56 < d < 76
850,861 — 2d, d; 9]]157 78 < d <98
97 313 1010 1010, 1013 — 2d, d; 1]]313 2<d<58
1010, 1017 — 2d, d; 5]313 60 < d <84
1010, 1021 — 2d, d; 9]]313 86 < d <110
701 5066 5066, 5069 — 2d, d; 1]]701 2<d<130
J701 132 < d < 188
5066, 5077 — 2d, d; 9]]701 190 < d < 246
]
]

]
]
]
]
]
]
]
]

1877 17186

l
[l
I
[l
[l
I
I
[l
[l
[l
[l
[[5066, 5073 — 2d, d; 5
[l
[l
[l
i
[l
[l
[l
541 593 650 [
[l
l
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C is an n-constacyclic code of length n over F,» with defining set T' = Uf:o Cs_(q+1)i, Where
0<0< f(1)—2t, then C**» C C.

Proof: The proof is similar to the proof of Lemma 7, we omit it here. ]

Lemma 12: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 2, where
2 2

a = 4h? + (4h +1)%, h > 2, and t is a positive integer. Suppose that n = qTH, s = q—;l.

If C is an n-constacyclic code of length n over F,2 with defining set T' = Uf:o Cs—(g+1)i> and
parity-check matrix H, then rank(HH) = 4(k — 1), when

(1) 0<6<f1)—2t, k=1
@) fF)—2+1<6<f(2)—1, k=2

(3) flk—1)<d< f(k) —1k=3,4

Proof:

(1) When k£ = 1, let C be an n-constacyclic code of length n over F, with defining set
T = U?:o Cs—(q+1)i» where 0 < § < f(1) — 2t, then rank(HHT) = 0 follows from Lemma
11.

(2) When k£ = 2, let C be an n-constacyclic code of length n over Fp with defining set
T = Ty UT, UTs, where Ty = U™ Conyi, T = Cosornyy—2esny, Ts =
Uf:f(l)—2t+2 Cs—(q+1)i>» and f(1) =2t +2 < 6 < f(2) — 1. Let Ci, C2 and C3 be con-
stacyclic codes with parity-check matrices Hy, Ho and Hj, and defining sets 17, T», and
T3, respectively. Then

H,y
Hs

Therefore,

H\H| H\H} HHI
HH' = H,H] HyH] H,H]
HsH| HsH] HsH)

According to Lemma 11, one can get rank(HlHI) =0.
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From —qC; = C,_ 411, in Lemma 4, we have
2

—q[s = (f(1) =2t +1)(g +1)]
(6h+1)g —2h — 1

=—gq[s+ g (¢+1)]

_ gt —(6h + 1)q;a+ (2h + l)q(q L)

. q;lni 7(6h+216)1(q?+1)(q+1)i (2h+1)¢21a+6h+1(q+1)(m0d (g+ D))
o ZREDIHOREL (1) mod (g + 1)),

2a

which implies that —qCs_(r1)—2641)(g+1) = C,_ (2t 1)gtontl (o 41y

Thus, rank(HyH3) = rank(HsH}) = 0, rank(H, H}) = rank(HyH]) = 2. The following
will indicate that rank(HlH;[) = rank(HgHI) =0and rcmk:(HgH;r) = 0. As a matter of
fact, 'rank(HlH;) = 0 is equivalent to 77 N (—¢73) = 0.

Supppose T1 N (—qT3) # 0, then there exist two integers 4, j, where 0 < ¢ < f(1) — 2,
f(1)—2t+2<j < f(2) — 1 such that
s—(qg+1)i=—q[s — (¢4 1)j]¢*(mod (¢ + 1)n), £=0,1.

(I) If £ =0, then s — (¢ + 1)i = —¢q[s — (¢ + 1)j](mod (g + 1)n). Since —q¢Cs = C’sfq%rln,
we have

2ai + 2aqj = ¢* + 1(mod 2(¢* + 1)). (7)
As 0<2ai < (6h+1)g—2h—1—2a, (6h+1)g—2h — 14 2a < 2aj < (10h+3)q +
10h 4+ 1 — 2a, we divide the discussion into the following six cases as to 2aj:

(i) If (6h+1)g —2h — 1+ 2a < 2aj < (6h+ 3)g + 18h + 3, then we can obtain that

2ai + 2aqj > (6h +1)(¢> + 1) + (2a — 2h — 1)g — 6h — 1,
2ai 4 2aqj < (6h + 3)(q® + 1) + (24h + 4)q — 2a — 8h — 4,

thus,
(6h +1)(¢> + 1) < 2ai + 2aqj < (6h +4)(¢*> + 1).

When 2ai + 2aqj = (6h + 3)(¢> + 1), Eq. (7) is satisfied. We express 2ai in
the form 2ai = uq + v, where 0 < u < 6h—1,0 < v < ¢g—1, and u = 6h,
0 <wv<qg—2h—1-2a, so 2ai + 2aqj = (2aj + u)g + v. By the division
algorithm, it must be (6h + 3)q = 2aj + u, which is impossible according to the
form of gq.

(i) If (6h + 3)g + 18h + 4 < 2aj < (6h + 5)g — (6h + 1), then we can obtain

2ai + 2aqj > (6h +3)(¢> + 1) + (18h + 4)q — 6h — 3,
2ai + 2aqj < (6h +5)(¢> + 1) — 2a — 8h — 6,



(iii)
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thus,
(6h +3)(q* + 1) < 2ai + 2aqj < (6h +5)(¢*> + 1),

which is a contradiction.
If 2m+1)g+1<2aj < (2m+ 3)g — 6h — 1, where 3h + 2 < m < 5h — 2, then
we can obtain

2ai + 2aqj > (2m +1)(¢> +1) +q—2m — 1,
2ai + 2aqj < (2m + 3)(¢> + 1) — 2a — 2h — 2m — 4,

thus,
(2m +1)(¢*> + 1) < 2ai + 2aqj < (2m +3)(¢* + 1),

which is a contradiction.
If (2m+ 1)qg — 6h < 2aj < (2m + 1)q, where 3h +2 < m < 5h — 1, then we can
obtain

2ai + 2aqj > (2m +1)(¢*> + 1) — 6hq — 2m — 1,
2ai + 2aqj < (2m + 1)(¢> + 1) + (6h + 1)g — 2h — 2a — 2m — 2,

thus,
2m(q® + 1) < 2ai + 2aqj < (2m +2)(q> + 1).

When 2ai + 2aqj = (2aj +u)g +v = (2m + 1)(¢®> + 1), Eq. (7) is satisfied.
By the division algorithm, it must be (2m + 1)q = 2aj + u, which is impossible
according to the form of q.

If (10h —1)g+1 < 2aj < (10h + 1)g — 10h — 4, then we can obtain

2ai + 2aqj > (10h — 1)(¢* +1) + ¢ — 10h + 1,
2ai + 2aqj < (10h +1)(¢® + 1) — (4h + 3)q — 2a — 12h — 2,

thus,
(10h — 1)(¢* + 1) < 2ai + 2aqj < (10h +1)(¢* + 1),

which is a contradiction.
If (10h + 1)g — 10h — 3 < 2aj < (10h + 3)q + 10h + 1 — 2a, then we can obtain

2ai + 2aqj > (10h + 1)(¢*> + 1) — (10h + 3)qg — 10h — 1,
2ai + 2aqj < (10h + 3)(¢® +1) — (2a — 16h — 2)q — 2a — 12h — 4,

thus,
10h(¢* + 1) < 2ai + 2aqj < (10h +3)(¢* + 1).

When 2ai + 2aqj = (2aj + u)qg +v = (10h + 1)(¢*> + 1), Eq. (7) is satisfied.
By the division algorithm, it must be (10h + 1)g = 2aj + u, which is impossible
according to the form of q.



786 New entanglement-assisted MDS quantum constacyclic codes
(I) If =1, then s — (¢ + 1)i = —q[s — (¢ + 1)j]¢*(mod (g + 1)n), which is equivalent to
2aqj — 2ai = ¢* + 1(mod 2(¢* + 1)). (8)

From 0 < 2ai < (6h+1)g—2h—1—2a, (6h+1)g—2h—142a < 2aj < (10h+3)g+
10h + 1 — 2a, we also divide the discussion into the following six cases as to 2aj:

(i) If (6h+1)g — 2h — 14 2a < 2aj < (6h + 3)q + 18h + 3, then we can obtain

2aqj — 2ai > (6h + 1)(¢> + 1) 4 (2a — 8h — 2)q + 2a — 4h,
2aqj — 2ai < (6h + 3)(¢* + 1) + (18h + 3)q — 6h — 3,

thus,
(6h +1)(q> + 1) < 2aqj — 2ai < (6h + 4)(¢*> + 1).

When 2aqj — 2ai = (6h + 3)(¢*> + 1), Eq. (8) is satisfied. We express 2ai in
the form 2ai = uqg + v, where 0 < u < 6h—1,0 < v < ¢g—1, and u = 6h,
0<wv<q—2h—1-2a, so 2aqj — 2ai = (2aj — u)q + v. By the division
algorithm, it must be (6h 4 3)q = 2aj — u, which is impossible according to the
form of gq.

(ii) If (6h + 3)q + 18h +4 < 2aj < (6h + 5)g, then we can obtain

2aqj — 2ai > (6h+ 3)(¢> + 1) + (12h + 3)q + 2a — 4h — 2,
2aqj — 2ai < (6h +5)(¢* + 1) — 6h — 5,

thus,
(6h +3)(¢> + 1) < 2aqj — 2ai < (6h +5)(¢*> + 1),

which is a contradiction.

(iii) If (2m +1)g+6h + 1 < 2aj < (2m + 3)q, where 3h +2 < m < 5h — 2, then we
can obtain

2aqj — 2ai > (2m +1)(¢° 4+ 1) + 2k + 2a — 2m,
2aqj — 2ai < (2m +3)(¢* +1) —2m — 3,

thus,
(2m +1)(¢* + 1) < 2aqj — 2ai < (2m +3)(¢* + 1),

which is a contradiction.
(iv) If 2m+1)g+ 1 < 2aj < (2m + 1)g + 6h, where 3h +2 < m < 5h — 1, then we
can obtain

2aqj — 2ai > (2m + 1)(¢* + 1) + 2a + 2h — 6hq — 2m,
2aqj — 2ai < (2m +1)(¢* + 1) + 6hg —2m — 1,
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thus,
2m(q® +1) < 2aqj — 2ai < (2m +2)(¢* + 1).
When 2aqj — 2ai = (2aj —u)q+v = (2m + 1)(¢*> + 1), Eq. (8) is satisfied. By

the division algorithm, it must be (2m + 1)¢ = 2aj — u, which is impossible
according to the form of q.

If (10h — 1)g + 6h + 1 < 2aj < (10h + 1)g — 10k — 4, then we can obtain

2aqj — 2ai > (10h — 1)(q?

+1) +2a + 2 — 8h,
2aqj — 2ai < (10h 4 1)(¢* +

1
1) — (10h 4 4)qg — 10h — 1,
thus,

(10h — 1)(¢* + 1) < 2aqj — 2ai < (10h + 1)(¢* + 1),

which is a contradiction.
If (10h + 1)g — 10h — 3 < 2aj < (10h + 3)q + 10h + 1 — 2a, then we can obtain

2aqj — 2ai > (10h + 1)(¢* + 1) — (16h + 4)q — 8h + 2a,
2aqj — 2ai < (10h + 3)(¢® + 1) — (2a — 10h — 1)q — 10h — 3,

thus,
10h(¢® + 1) < 2aqj — 2ai < (10h + 3)(¢® +1).
When 2aqj — 2ai = (2aj — u)q+v = (10h + 1)(¢®> + 1), Eq. (8) is satisfied. By

the division algorithm, it must be (10h + 1)¢ = 2aj — u, which is impossible
according to the form of q.

Obviously, rank‘(HgHg ) = 0 can be proved in a similar way. To sum up, we have

Tank(HHT) :rank(Hng) + ’I"CLTLk(HgHI) =4

The proofs of other cases are similar to the above proof, the desired results follow. [J

Theorem 5: Let n =
a = 4h?+ (4h+1)%, h > 2, and t is a positive integer. Then there exist g-ary EAQMDS codes
with the following parameters:

*+1
a

, where ¢ is an odd prime power with the form g = (2t—1)a—10h—2,

(1) [[n,n —2d + 2,d]], where 2 < d < 2f(1) — 4t + 2 is even, k = 1;

(2) [[n,n — 2d 4+ 4k — 2,d;4(k — 1)]], where 2f(1) —4t +4 < d < 2f(2) is even, k = 2 or

2f(k—1)+2<d < 2f(k) is even, k = 3,4.



788 New entanglement-assisted MDS quantum constacyclic codes

Proof: Let C be an n-constacyclic code of length n over Fj. with parity-check matrix H.
Suppose that the defining set of C is given by T' = Uf:o Cs—(g+1)i» where 0 < 0 < f(4) — 1.
Then the n-constacyclic code C is generated by the polynomial

g(z) = (x — o=@ (2 — of @Y (2 — 0% (z — o T (g — oo a0

which implies that C consists of 20 + 1 consecutive roots. Hence, the minimum distance of C is
at least 26 +2 according to Lemma 1. Then C is a g?-ary n-constacyclic code with parameters
[n,n — (26 +1),> 26 + 2]. According to Lemma 12, rank(HH') = 4(k — 1), when

(1) 0<s<f(l) -2t k=1,
(2) f(1)—2t+1<6<f(2)—1, k=2
(3) flk—1) <0< f(k)—1k=34.

Therefore, we can obtain g-ary EAQMDS codes with the above parameters from Theorem
2 and the EA-quantum Singleton bound. O

Remark 1: Let a = m25+1, m = 10h 4+ 2 and a|(¢ + m). Quantum MDS codes of length
_ 441

n = = with parameters [[n,n — 2d + 2,d]], had already been derived from constacyclic
codes in [17], where 2 < d < w is even. It is indeed the quantum MDS codes
of length n = m. One can easily see that the quantum MDS codes obtained here

coincide with theirs, in other words, we generalize the results in [17].

Example 3: In Table 4, we list some new EAQMDS codes of length % obtained from
Theorem 5, where ¢ is an odd prime power of the form ¢ = (2t — 1)a — 10h — 2, a =
4h? 4+ (4h +1)%, h > 2, and t is a positive integer.

3.2.2  The case ¢ = (2t — 1)a + (10h + 2)

Define

2h +4kh + 3 k(8h +2) —26h —5
ity = G AR B ksh +2 | "

Similar to the discussion of the case ¢ = (2t — 1)a — 10h — 2, we have the following results.

Lemma 13: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h + 2, where

a = 4h* + (4h + 1)%, h, t are positive integers. Suppose that n = qza—'H, s = quH. IfC

is an n-constacyclic code of length n over F,2 with defining set 7' = Uf:o Cs—(q+1)i» Where
0<6§< f(1)—2t, then C*+» C C.

Lemma 14: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h + 2, where

2 2
:%, —%. If C is an n-

a = 4h? + (4h +1)2, h, t are positive integers. Suppose that n

constacyclic code of length n over Fg 2 with defining set T' = Uf:o Cs—(q+1)i> and parity-check
matrix H, then rank(HHT) = 4(k — 1), when
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Table 4. Some new EAQMDS codes of length n = qi% with ¢ = (2¢ — 1)a — 10h — 2 and
a = 4h? 4 (4h + 1)? via constacyclic codes

a q n n, k,d;cllq d is even
97 269 746  [[746,752 — 2d, d; 4|29 38 <d<64
746,756 — 2d, d; 8]]269 66 < d < 86

746,760 — 2d, d; 12]]269 88 < d < 108
2210, 2216 — 2d, d; 4]] 463 64 < d <110
2210, 2220 — 2d, d; 8]] 463 112 < d < 148
2210, 2224 — 2d,d; 12]]463 150 < d < 186

463 2210

205 173 146 [[146,152 — 2d, d; 4]]173 18<d <28
146,156 — 2d, d; 8]]173 30<d<38
353 311 274 [[274,280 — 2d, d; 4]]311 24 < d <38
274,284 — 2d, d; 8]]311 40 < d < 52

274,288 — 2d, d; 12]]311 54 < d < 66
8410,8416 — 2d,d; 4]]1723 124 < d < 210
8410,8420 — 2d, d; 8]]1723 212 < d < 288
8410, 8424 — 2d, d; 121725 290 < d < 366
4562,4568 — 2d, d; 4]]1571 92 < d < 154
4562,4572 — 2d,d; 8]]1571 156 < d < 212
4562,4576 — 2d,d; 12]]1571 214 < d < 270

1723 8410

I
i
I
[l
i
i
I
[l
[l
[[146,160 — 2d,d; 12]]173 40 <d <48
I
[l
i
I
I
[l
541 1571 4562 [
I
[l
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(1) 0<6<f(1)—2t k=1,

(2) f(1) 2 +1<8< f(2)— Lk=2

(3) f(k—1) <8< f(k) 1, k=34

Theorem 6: Let n = q2:1 , where ¢ is an odd prime power with the form g = (2¢t—1)a+10h+2,

a = 4h? + (4h + 1)2, h, t are positive integers. Then there exist g-ary EAQMDS codes with
the following parameters:

(1) [[n,n —2d+ 2,d]], where 2 < d < 2f(1) — 4t + 2 is even, k = 1;

(2) [[n,n — 2d + 4k — 2,d;4(k — 1)]], where 2f(1) —4t +4 < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d < 2f(k) is even, k = 3,4.

Remark 2: Let a = m25+1, m = 10h + 2 and a|(qg + a —m). Quantum MDS codes of length

n = q%l with parameters [[n,n — 2d + 2, d]], had already been derived from constacyclic
codes in [17], where 2 < d < w is even. It is indeed the quantum MDS codes
of length n = 4}124(:?+1+1)2' One can easily see that the quantum MDS codes obtained here
coincide with theirs, in other words, we generalize the results in [17].

Example 4: In Table 5, we list some new EAQMDS codes of length % obtained from
Theorem 6, where ¢ is an odd prime power of the form ¢ = (2t — 1)a + 10h + 2, a =
4h? + (4h +1)2, and h, t are positive integers.

4 New EAQMDS codes of length n = q%l with a = h? + (3h + 1)2

In this section, we will construct some new EAQMDS codes of length n = q%l with a =
h? + (3h + 1)? via n-constacyclic codes and cyclic codes, where ¢ = 2ta & (10h + 3), h and
t are positive integers. The construction methods of such length is analogous to the case
a = 4h? + (4h + 1)%, so we just provide the main results.

From n-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 7: Let ¢ be an odd prime power with the form ¢ = 2ta — 10h — 3, where
a = h?+ (Bh+ 1)%2, h > 2, and t is a positive integer. Assume that n = q2:17 and
flk) = [2h(k+2)+3]q_2(a6h+2)(k_?’)_l. Then there exist g-ary EAQMDS codes with the following
parameters:

(1) [[n,n —2d + 2,d]], where 2 < d < 2f(1) — 2t(2h + 2) + 2 is even, k = 1;

(2) [[n,n—2d+ 4k — 2,d;4(k — 1)]], where 2f(1) — 2t(2h +2) +4 < d < 2f(2) is even, k = 2
or 2f(k—1)+2<d<2f(k) is even, k = 3,4,5.

Theorem 8: Let ¢ be an odd prime power with the form ¢ = 2ta + 1Oh2—|— 3, where
a =h?+ (3h+1)2%, h > 2, and t is a positive integer. Assume that n = %, f(k) =

[Qh(k+2)+3}q'g(fh+2)(k_3)+1. Then there exist g-ary EAQMDS codes with the following param-

eters:
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Table 5. Some new EAQMDS codes of length n = qi% with ¢ = (2t — 1)a + 10h + 2 and
a = 4h? 4 (4h + 1)? via constacyclic codes

1877 17186  [[17186,17192 — 2d, d; 4]]1877 176 < d < 302
17186,17196 — 2d,d; 8]]1877 304 < d < 412
17186,17200 — 2d, d; 12]]1877 414 < d < 522
650,656 — 2d, d; 4]]503 36 <d <58
650, 660 — 2d, d; 8]]503 60 < d < 80

650,664 — 2d, d; 12]] 503 82 < d <102

541 593 650

a q n [[n, k, d; c]]q d is even
29 41 58 ([58,64 — 2d, d; 4])41 12<d<18
([58,68 — 2d, d; 8]]41 20<d<24
[68,72 — 2d, d; 12]] 41 26 < d <30
157 850 [[850, 856 — 2d, d; 4]]157 40<d <70
(1850, 860 — 2d, d; 8]]157 72<d <92
[850, 864 — 2d, d; 12]]157 94<d<114
97 313 1010  [[1010,1016 — 2d, d; 4]313 44<d<T74
[[1010, 1020 — 2d, d; 8]]313 76 < d < 100
[[1010,1024 — 2d, d; 12]]313 102 < d < 126
701 5066  [[5066,5072 — 2d, d; 4]]701 96 < d < 166
[5066, 5076 — 2d, d; 8]]701 168 < d < 224
[[5066, 5080 — 2d, d; 12]]701 226 < d < 282
205 647 2042  [[2042,2048 — 2d, d; 4]]6a7 62 < d < 104
[[2042, 2052 — 2d, d; 8]647 106 < d < 142
[[2042, 2056 — 2d, d; 12]]647 144 < d < 180
[l
[l
[l
[l
[l
[l




792 New entanglement-assisted MDS quantum constacyclic codes

(1) [[n,n —2d + 2,d]], where 2 < d < 2f(1) — 2t(2h + 2) — 2 is even, k = 1;

(2) [[n,n —2d+ 4k — 2,d;4(k — 1)]], where 2f(1) — 2t(2h + 2) < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d < 2f(k) is even, k = 3,4,5.

Remark 3: Let a = miarl, m = 10h+3 and a|(g+m) or a|(g+a—m). Quantum MDS codes

of length n = % had already been derived from constacyclic codes in [17], which is indeed

the quantum MDS codes of length n = %

codes obtained here coincide with theirs, in other words, we generalize the results in [17].

. One can easily see that the quantum MDS

From cyclic codes, new EAQMDS codes are also obtained as follows:

Theorem 9: Let ¢ be an odd prime power with the form ¢ = 2ta2— 10h — 3, where a =
h? 4 (3h +1)%, h > 2, and t is a positive integer. Assume that n = <1 and

a )

F(h) = [2h(k + 2) + k? + 4 — 3k]q + (10h + 3)k? + 28h + 8 — (36h + 11)k
N 2a '

Then there exist g-ary EAQMDS codes with the following parameters:

(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2, 3.

Theorem 10: Let ¢ be an odd prime power with the form ¢ = 2ta + 10h + 3, where
2
a=h?+ (3h+1)2, h and t are positive integers. Assume that n = +1 and

a )

[2h(k + 2) + k? + 4 — 3k]q + (36h + 11)k — (10h + 3)k* — 28h — 8
2a '

fk) =
Then there exist g-ary EAQMDS codes with the following parameters:
(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d; 14+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2,3.

Example 5: In Table 6, we list some new EAQMDS codes of length # obtained from
Theorems 7-10, where ¢ is an odd prime power of the form ¢ = 2ta4(10h+3), a = h?+(3h+1)?,
h and t are positive integers.

5 New EAQMDS codes of length n = q%l with a = (h +1)% + (3h + 2)2

In this section, we will construct some new EAQMDS codes of length n = q%l with a =
(h + 1) + (3h + 2)? via n-constacyclic codes and cyclic codes, where ¢ = 2ta & (10h + 7), h
and t are positive integers. The construction methods of such length is analogous to the case
a = 4h? + (4h + 1)%, so we just provide the main results.
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Table 6. Some new EAQMDS codes of length n = #j’l with a = h% + (3h + 1)2

a q n n, k,d;cl, d is even

53 83 130 [[130,136 —2d,d;4]]ss 16 < d < 30
130,140 — 2d,d; 8]]ss 32 <d < 36
130,144 — 2d,d;12]]g3 38 < d < 42
130,148 — 2d,d; 16]]s3 44 < d < 48
130,133 — 2d,d; 1]]ss ~ 2<d <22
130,137 — 2d,d; 5]ss 24 <d <28

1l
109 251 578 [[578,584 —2d,d;4]]as1 32 <d <62

578,588 — 2d,d; 8]]251 64 < d <76
578,592 — 2d,d; 12]]251 78 < d < 90
578,596 — 2d, d; 16]]251 92 < d < 104
578,581 —2d,d;1]]os1  2<d <46
578,585 — 2d, d; 5]]251 48 < d < 60

[l
[l
[l
[l
[l
[l
[l
[[130,141 — 2d,d;9]]s3 30 < d < 38
[l
[l
[l
[l
[l
[l
[[578,589 — 2d,d;9]as1 62 <d <78

Due to n-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 11: Let ¢ be an odd prime power with the form ¢ = 2ta — 10h — 7, where
2
a = (h+1)2+ (3h +2)2, h and t are positive integers. Suppose that n = %, and f(k) =

[4h+1+2k(h+1)]qgjk(3h+2)_18h_13. Then there exist g-ary EAQMDS codes with the following

parameters:
(1) [[n,n —2d + 2,d]], where 2 < d < 2f(1) — 4ht + 2 is even, k = 1;

(2) [[n,n —2d + 4k — 2,d;4(k — 1)]], where 2f(1) —4ht + 4 < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d<2f(k) is even, k = 3,4.

Theorem 12: Let ¢ be an odd prime power with the form ¢ = 2ta + 10h + 7, where

a=(h+1)?+ (3h +2)2, h and t are positive integers. Suppose that n = C+1 and f(k) =

a
[4h+1+2k(h+1)](1;;8’1“3_%(3}”2). Then there exist g-ary EAQMDS codes with the following

parameters:
(1) [[n,n —2d + 2,d]], where 2 < d < 2f(1) — 4ht — 2 is even, k = 1;

(2) [[n,n — 2d + 4k — 2,d;4(k — 1)]], where 2f(1) — 4ht < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d < 2f(k) is even, k = 3,4.
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Remark 4: Let a = miarl, m = 10h+T7 and a|(g+m) or a|(g+a—m). Quantum MDS codes

of length n = % had already been derived from constacyclic codes in [17], which is indeed
the quantum MDS codes of length n = M%. One can easily see that the quantum

MDS codes obtained here coincide with theirs, in other words, we generalize the results in
[17].

Due to cyclic codes, new EAQMDS codes are obtained as follows:

Theorem 13: Let ¢ be an odd prime power with the form ¢ = 2ta — 10h — 7, where
2
a = (h+1)2 4 (3h 4+ 2)%, h and t are positive integers. Suppose that n = < and

a

f(k) = 2hiltk(htD)atk(Sh+2)=4h=3 = Than there exist g-ary EAQMDS codes with the fol-

a

lowing parameters:
(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2, 3.

Theorem 14: Let ¢ be an odd prime power with the form ¢ = 2ta + 10h + 7, where
2
a = (h+1)2+ (3h+2)2 h > 2 and t is a positive integer. Suppose that n = L+t

a

and f(k) = 2hlth(ht1)jgtdhd5-k(3h+2) = Phep there exist g-ary EAQMDS codes with the

a

following parameters:
(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+ 4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2,3.

Example 6: In Table 7, we list some new EAQMDS codes of length # obtained from
Theorems 11-14, where ¢ is an odd prime power of the form ¢ = 2ta + (10h + 7), a =
(h+1)2 + (3h +2)2, and h, t are positive integers.

6 New EAQMDS codes of length n = q%l with a = (2h + 2)% + (4h + 3)?

In this section, we will construct some new EAQMDS codes of length n = q%l with a =
(2h+2)2 4 (4h+3)? via n-constacyclic codes and cyclic codes, where ¢ = (2t —1)a= (10h +8),
h and t are positive integers. The construction methods of such length is analogous to the
case a = 4h? + (4h + 1)%, so we just provide the main results.

According to n-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 15: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 8,
2
where a = (2h + 2)? + (4h + 3)%, h and t are positive integers. Let n = £, f(k) =

[2h+5+k(4h+2)]q+2?;4h+277k(12h+10). Then there exist g-ary EAQMDS codes with the following

parameters:

(1) [[n,n—2d+2,d]], where 2 < d < 2f(1) — 4t + 2 is even, k = 1;
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Table 7. Some new EAQMDS codes of length n = L:’l with a = (h 4+ 1)2 + (3h + 2)?

a q n n, k,d;cll, d is even
29 157 850 [[850,856 — 2d,d;4]]157 40 <d <170
850,860 — 2d,d; 8]]157 72 <d <92
850,864 — 2d,d; 12157 94 <d <114
850,853 — 2d,d; 1]]157 2<d <54
850,857 — 2d,d; 5]l157 56 < d <76
lis7 78 <d<98
73 173 410 [[410,416 — 2d,d;4]]173 28 < d < 50
]

410,420 — 2d,d; 8])173 52 < d < 64
410,424 — 2d,d; 12]}173 66 < d <78
410,413 — 2d,d; 1]]173 2 < d < 38

410,417 — 2d, d; 5]]173 40 < d < 52

[l
[l
[l
I
[l ]
[l ]
[[850, 861 — 2d, d; 9]
I ]
[l ]
[l
I
I
[[410,421 — 2d,d;9]]173 54 < d < 66

(2) [[n,n — 2d 4+ 4k — 2,d;4(k — 1)]], where 2f(1) —4t +4 < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d < 2f(k) is even, k = 3,4.

Theorem 16: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h + 8,
where a = (2h + 2)2 + (4h + 3)%, h and t are positive integers. Let n = #, f(k) =

[2h+5+k(4h+2)]q+2’;(12h+10)734}“27. Then there exist g-ary EAQMDS codes with the following

parameters:
(1) [[n,n —2d+ 2,d]], where 2 < d < 2f(1) — 4t + 2 is even, k = 1;

(2) [[n,n — 2d 4+ 4k — 2,d;4(k — 1)]], where 2f(1) —4t +4 < d < 2f(2) is even, k = 2 or
2f(k—1)+2<d<2f(k) is even, k = 3,4.

Remark 5: Let a = 7"2;'1, m = 10h + 8 and a|(q + m) or a|(q + a — m). Quantum MDS

codes of length n = # had already been derived from constacyclic codes in [17], which is
indeed the quantum MDS codes of length n = Wﬁ%' One can easily see that the
quantum MDS codes obtained here coincide with theirs, in other words, we generalize the

results in [17].
According to cyclic codes, new EAQMDS codes are obtained as follows:

Theorem 17: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a — 10h — 8, where
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a = (2h +2)? + (4h + 3)?, h and t are positive integers. Let n = @41 .04

a )

Fk) = [4(k + 1)h + (7 — k)k]q + 2(19h + 15)k — 2(5h + 4)k2 — 32h — 26
= 5 .
Then there exist g-ary EAQMDS codes with the following parameters:

(1) [[n,n —2d+ 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d;1 4+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2, 3.

Theorem 18: Let ¢ be an odd prime power with the form ¢ = (2t — 1)a + 10h + 8, where
2
a = (2h +2)% + (4h + 3)2, h and ¢ are positive integers. Let n = £, and

[4(k + 1) + (T — k)k]qg + 2(5h + 4)k2 + 32h + 26 — 2(19h + 15)k

70) = - .

Then there exist g-ary EAQMDS codes with the following parameters:
(1) [[n,n —2d + 3,d;1]], where 2 < d < 2f(1) is even, k = 1;

(2) [[n,n—2d+4k —1,d; 14+ 4(k — 1)]], where 2f(k — 1) +2 < d < 2f(k) is even, k = 2,3.

Example 7: In Table 8, we list some new EAQMDS codes of length # obtained from
Theorems 15-18, where ¢ is an odd prime power of the form ¢ = (2t — 1)a + (10h + 8),
a = (2h+2)% + (4h + 3)2, and h, t are positive integers.

7 Conclusion

In this paper, by selecting different de2ﬁning sets of m-constacyclic codes and cyclic codes,
some EAQMDS codes of length n = % with a = 4h? + (4h + 1), a = h% + (3h + 1)?,
a = (h+1)2+ (3h +2)% and a = (2h + 2)% + (4h + 3)? were respectively constructed
by exploiting small pre-shared maximally entangled states ¢, where h is a positive integer.
Comparing their parameters with the known EAQMDS codes in Table 1, one can see that
the obtained EAQMDS codes are new in the sense that their parameters are not covered.
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