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Entanglement-assisted quantum error-correcting codes can be seen as a new-type of quan-
tum error-correcting codes and can be constructed from arbitrary linear codes which

should not satisfy the dual-containing condition by utilizing shared entangled states

between the sender and the receiver in advance. In this paper, we construct several
new classes of entanglement-assisted quantum maximum-distance-separable codes from
constacyclic codes and cyclic codes by exploiting small pre-shared entangled states, re-
spectively. These codes are new in the sense that they are not covered by the codes
available in the literature.
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1 Introduction

Quantum error-correcting(QEC) codes are used to decrease unnecessary decoherence in quan-

tum computation and quantum communication. In quantum coding theory, the major task

is to acquire optimal QEC codes with desired parameters. As we know, QEC codes can be

constructed from classical linear codes that satisfy the dual-containing (or self-orthogonality)
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condition [5]. However, many classical linear codes with high performance could not be used

to construct QEC codes due to such limitation. In 2002, Bowen [2] found that both quan-

tum and classical communication capacity can be increased by using pre-shared entangled

states between the sender and the receiver. In 2006, entanglement-assisted quantum error-

correcting(EAQEC) codes were proposed by Brun et al. [3], which can be constructed from

non-dual-containing quaternary linear codes. Later, Galindo et al. [12] generalized it to an

arbitrary finite field. From then on, many scholars have taken a big step towards constructing

EAQEC codes with good parameters in [4, 10, 11, 25, 26, 35, 47].

Suppose that q is a prime power, representing a q-ary EAQEC code by [[n, k, d; c]]q, which

encodes k information qudits into n channel qudits and can correct up to bd−12 c errors with

the help of c pairs of maximally pre-shared entangled states, where d is the minimum distance

of the EAQEC code. To be specific, assume that L is the space of linear operators defined on

the Hilbert space H. Considering the isometric operator U : H⊗n1 → H⊗n2 and its completely

positive, trace preserving(CPTP) map Û : L⊗n1 → L⊗n2 defined by Û(ρ) = UρU†. As shown

in [4], quantum communication scenario involves two spatially separated parties, Alice and

Bob, having the following resources at their disposal:

• a noisy quantum channel defined by a CPTP map N : L⊗n → L⊗n taking density

operators on Alice’s system to density operators on Bob’s system;

• the c ebit state |Φ〉⊗c shared between Alice and Bob.

Via the above resources, Alice wishes to send k qubits to Bob perfectly. An [[n, k, d; c]]

EAQEC code contains

• an encoding map E : L⊗k ⊗ L⊗c → L⊗n;

• a decoding map D : L⊗n ⊗ L⊗c → L⊗k

with D ◦ N ◦ E ◦ V̂ = id⊗k, where V is the isometry that appends the state |Φ〉⊗c. Namely,

V|φ〉 = |φ〉|Φ〉⊗c, and id is the identity map from L to L on a single qubit.

Actually, when c = 0, it is an [[n, k, d]]q QEC code. The performance of an EAQEC code

can be measured by its rate k
n and net rate k−c

n . Analogous with quantum Singleton bound,

Brun et al. [3] proposed EA-quantum Singleton bound for EAQEC codes. However, Grassl

[14] gave some examples of EAQEC codes to show that such bound is incomplete. It holds

just under the case d ≤ n+2
2 [24]. The specific bound is as follows:

Theorem 1: [1, 3, 15, 24](EA-quantum Singleton bound) Let C be an [[n, k, d; c]]q EAQEC

code. If d ≤ n+2
2 , then its parameters satisfy

n+ c− k ≥ 2(d− 1),

where 0 ≤ c ≤ n−1. Particularly, if the equality is achieved, then C is called an entanglement-

assisted quantum maximum-distance-separable(EAQMDS) code.

Although we do not need to consider the dual-containing conditions of linear codes in the

construction of EAQEC codes, it is difficult to determine the number of maximally pre-shared

entangled states systematically. Untill now, there are two main techniques to determine such
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number. One is through decomposing the defining sets of constacyclic codes[8, 36], and the

other is through computing the hull dimensions of linear codes[16]. In addition to these two

methods, scholars have constructed many EAQEC codes with a variety of parameters via

linear complementary dual(LCD) codes, generalized Reed-Solomon(GRS) codes, extended

GRS codes, Goppa codes, and matrix-product codes(see [13, 27, 31, 32, 38, 39, 41] and the

relevant references therein).

Because of the nice algebraic structure of constacyclic codes, including cyclic codes and

negacyclic codes, they have been applied extensively to the construction of EAQEC codes.

In [29, 30], Li et al. proposed the decomposition of defining sets of cyclic codes and many

EAQMDS codes with large minimum distances were constructed. Later, the authors [8, 36]

extended such method to general constacyclic codes, and many classes of EAQMDS codes

of length n dividing q2 − 1(see, for example [8, 19, 28, 33, 34, 36, 37, 40, 44, 45, 48]) or

q2 + 1(see, for example[8, 9, 20, 36, 37, 42, 43, 46]) have been constructed. In [6], Chen et

al. obtained some new classes of EAQMDS codes of length q2+1
a , where a = t2 + 1, t ≥ 2

is a positive integer, which contains the EAQMDS codes of lengths q2+1
5 , q2+1

10 and q2+1
17 .

Recently, Huang et al. [18] constructed some new classes of EAQMDS codes of length q2+1
ρ ,

where ρ = a2 + (a + 1)2, a ≥ 2 is a positive integer, which contains the EAQMDS codes of

length q2+1
13 . Some known EAQMDS codes of lengths that divide q2 + 1 are listed in Table 1.

In this paper, taking advantage of decomposing the defining sets of constacyclic codes and

cyclic codes over Fq2 , we first determine the number of pre-shared entangled states c and

then construct some new classes of EAQMDS codes of length q2+1
a with a = 4h2 + (4h+ 1)2,

a = h2 + (3h + 1)2, a = (h + 1)2 + (3h + 2)2, and a = (2h + 2)2 + (4h + 3)2, where h is a

positive integer.

The entire work is organized as follows. Some related basic knowledge about constacyclic

codes (including cyclic codes) and EAQEC codes are reviewed in Section 2. In Sections 3,

4, 5 and 6, some new classes of EAQMDS codes with small pre-shared entangled states are

derived from constacyclic codes and cyclic codes, respectively. In Section 7, we conclude the

paper.

2 Preliminaries

Let Fq2 denote the Galois field with q2 elements, and F∗q2 denote the multiplicative group

consisted of the nonzero elements of Fq2 , where q is a prime power. For any two vectors

x = (x0, x1, . . . , xn−1),y = (y0, y1, . . . , yn−1) ∈ Fnq2 , their Hermitian inner product is defined

as

〈x, y〉h =

n−1∑
i=0

xiy
q
i = x0y

q
0 + x1y

q
1 + · · ·+ xn−1y

q
n−1.

A q2-ary linear code C of length n with dimension k and minimum distance d, denoted as

[n, k, d]q2 , is a k-dimensional linear subspace of Fnq2 . The Hermitian dual code of C is

C⊥h = {x ∈ Fnq2 |〈x,y〉h = 0, for all y ∈ C},

which is a (n − k)-dimensional linear code. If C⊥h ⊆ C, then C is known as a Hermitian

dual-containing code.
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Suppose that gcd(n, q) = 1, and η ∈ F∗q2 with order r, i.e., ord(η) = r. For any c =

(c0, c1, . . . , cn−1) ∈ Fnq2 with the polynomial representation c(x) = c0 + c1x+ · · ·+ cn−1x
n−1,

an η-constacyclic shift of c is defined by

σ(c) = σ(c0, c1, . . . , cn−1) = (ηcn−1, c0, . . . , cn−2).

If σ(c) ∈ C for all c ∈ C, then C is called an η-constacyclic code of length n over Fq2 , which

can be also seen as an ideal in the principal ideal ring
Fq2 [x]

〈xn−η〉 . Hence, there is a monic divisor

g(x) of xn − η in Fq2 [x] such that C = 〈g(x)〉. The polynomial g(x) is the so-called generator

polynomial of C and the dimension of C is n− deg(g(x)).

Let ordrn(q2) = m, i.e., m is the multiplicative order of q2 modulo rn, then there exists

a primitive rn-th root of unity ξ ∈ Fq2m such that ξn = η. So all the roots of xn − η can be

expressed as ξ1+ri, where i = 0, 1, . . . , n − 1. Let Ω = {1 + ri|0 ≤ i ≤ n − 1}. The defining

set of an η-constacyclic code with generator polynomial g(x) is defined as

T = {j ∈ Ω|g(ξj) = 0},

and the defining set of C⊥h is T⊥h = Ω \ (−qT ), where −qT = {rn− qj|j ∈ T}.
For any e ∈ Ω, the q2-cyclotomic coset of e modulo rn is given by

Ce = {eq2l (mod rn)|0 ≤ l ≤ le − 1},

where le is the smallest integer satisfying eq2le ≡ e (mod rn). It is clear that T is a union of

some q2-cyclotomic cosets and dim(C) = n − |T |, where |T | means the cardinality of the set

T . For a constacyclic code C, its minimum distance satisfy the following well-known bound.

Lemma 1: [21] (BCH bound for constacyclic codes) Assume that gcd(q, n) = 1, ord(η) = r,

and ξ is a primitive rn-th root of unity. Let C be an η-constacyclic code of length n over Fq2 .

If the generator polynomial g(x) of C has the elements {ξ1+rj | 0 ≤ j ≤ δ − 2} as its roots,

then the minimum distance of C is at least δ.

The following result provides a criterion for determining whether C is a Hermitian dual-

containing code or not.

Lemma 2: [22] Assume that C is an η-constacyclic code of length n over Fq2 with defining

set T , then C⊥h ⊆ C if and only if T ∩ (−qT ) = ∅.

Let q be an odd prime power, and a be an odd integer with a|(q2 + 1), then n = q2+1
a

is even. Assume that ω is a primitive element of the finite field Fq2 , and η = ωq−1. Then

r = ord(η) = q + 1. From Lemma 3.12 in [22], we obtain the following result.

Lemma 3: Let n = q2+1
a , s = q2+1

2 , and a be an odd integer. Then all cyclotomic cosets

modulo (q + 1)n containing 1 + (q + 1)i are Cs = {s}, Cs± q+1
2 n = {s ± q+1

2 n}, Cs−(q+1)i =

{s− (q + 1)i, s+ (q + 1)i} for 1 ≤ i ≤ n
2 − 1.

The relationship between the cyclotomic cosets Cs and Cs− q+1
2 n is as follows.

Lemma 4: Let q be an odd prime power, n = q2+1
a with a being odd, and s = q2+1

2 . Then
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−qCs = Cs− q+1
2 n.

Proof:

−qs = −(q + 1)s+ s

= −a− 1

a
(q + 1)s− 1

a
(q + 1)s+ s

= −a− 1

2
(q + 1)

q2 + 1

a
− 1

2
(q + 1)

q2 + 1

a
+ s

≡ s− q + 1

2
n (mod (q + 1)n),

which implies that −qCs = Cs− q+1
2 n.

If r = 1, then an η-constacyclic code is indeed the cyclic code of length n over Fq2 . There

is a similar result as Lemma 3, which was obtained in [23].

Lemma 5: [23] Let n = q2+1
a , s = n

2 , where a is an odd integer, and q is an odd prime power.

Then all cyclotomic cosets modulo n containing integers from 0 to n are C0 = {0}, Cs = {s},
Ci = {i,−i} for 1 ≤ i ≤ s− 1.

Similar to the proof of Lemma 4, we also have the following result.

Lemma 6: Let n = q2+1
a , s = n

2 , where a is an odd integer, and q is an odd prime power.

Then −qCs = Cs.

For any η ∈ Fq2 , the conjugate of η is defined as η = ηq. Let H = (aij)(n−k)×n be

the parity-check matrix of C over Fq2 with 1 ≤ i ≤ n − k and 1 ≤ j ≤ n. Then the

conjugate transpose matrix of H is defined as H† = (aji)n×(n−k). As we know, the key in

the constructions of EAQEC codes is to calculate the number of pre-shared entangled states.

According to [3, 47], the following method was used to calculate such number.

Theorem 2: [3, 47] Let C be a q2-ary linear code of length n over Fq2 with parity-check matrix

H(n−k)×n. Suppose that c = rank(HH†), where H† is the conjugate transpose matrix of H. If

C has parameters [n, k, d]q2 , then there is an EAQEC code with parameters [[n, 2k−n+c, d; c]]q.

3 New EAQMDS codes of length n = q2+1
a with a = 4h2 + (4h+ 1)2

In this section, we will construct some new EAQMDS codes of length n = q2+1
a with a =

4h2 + (4h + 1)2 from cyclic codes and constacyclic codes, respectively, where q is a prime

power of the form q = (2t− 1)a± (10h+ 2), and t, h are positive integers.

3.1 New EAQMDS codes derived from cyclic codes

In this subsection, we will construct some new EAQMDS codes of length n = q2+1
a with

a = 4h2 + (4h+ 1)2 from cyclic codes. We first consider the case q = (2t− 1)a− (10h+ 2).

3.1.1 The case q = (2t− 1)a− (10h+ 2)
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Define

f(k) =
[2h(k + 1) + 1]q + 2h− (4h+ 1)(k − 1)

a
. (1)

Lemma 7: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 2, where

a = 4h2 + (4h+ 1)2, h ≥ 2, and t is a positive integer. Suppose that n = q2+1
a , s = n

2 . If C is

a cyclic code of length n over Fq2 with defining set T =
⋃δ
i=1 Cs−i, where 1 ≤ δ ≤ f(1) − 1,

then C⊥h ⊆ C.

Proof: By Lemma 2, one obtains that C⊥h ⊆ C if and only if T ∩ (−qT ) = ∅. Supppose that

T ∩ (−qT ) 6= ∅, then there exist two integers i, j, where 1 ≤ i, j ≤ f(1)− 1, such that

s− i ≡ −q(s− j)q2`(mod n), ` = 0, 1.

(I) If ` = 0, then s− i ≡ −q(s− j)(mod n). Since −qCs = Cs, one can obtain

ai+ aqj ≡ 0(mod q2 + 1). (2)

As a ≤ ai, aj ≤ (4h + 1)q + 2h − a, for the convenience of the discussion, we divide aj

into the following four cases.

(i) If a ≤ aj ≤ 2q − 4h− 1, then

ai+ aqj ≥ a+ aq,

ai+ aqj ≤ 2(q2 + 1) + 2h− a− 2,

thus,

0 < ai+ aqj < 2(q2 + 1).

When ai+ aqj = q2 + 1, Eq. (2) can be met. We express ai in the form ai = uq+ v.

If t = 1, then a > q. Hence, due to the value range of ai, u, v are within the

cases: (1) u = 1, a − q ≤ v ≤ q − 1; (2) 2 ≤ u ≤ 4h − 1, 0 ≤ v ≤ q − 1; (3)

u = 4h, 0 ≤ v ≤ q + 2h − a. If t ≥ 2, then a < q. Hence, due to the value range

of ai, u, v are within the cases: (1) u = 0, a ≤ v ≤ q − 1; (2) 1 ≤ u ≤ 4h − 1,

0 ≤ v ≤ q − 1; (3) u = 4h, 0 ≤ v ≤ q + 2h− a. Thus ai + aqj = (aj + u)q + v. By

the division algorithm, it must be q = aj+u, which is impossible due to the form of

q = (2t−1)a− (10h+2)(If aj+u = (2t−1)a− (10h+2), then u must be a−10h−2,

which contradicts to the cases (1), (2) and (3)).

(ii) If mq ≤ aj ≤ (m+ 1)q − 4h− 1, where 2 ≤ m ≤ 4h− 1. Then one can obtain that

ai+ aqj ≥ m(q2 + 1) + a−m,
ai+ aqj ≤ (m+ 1)(q2 + 1) + 2h− a−m− 1,

thus,

m(q2 + 1) < ai+ aqj < (m+ 1)(q2 + 1),

which is a contradiction.
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(iii) If mq − 4h ≤ aj ≤ mq − 1, where 2 ≤ m ≤ 4h− 1. Then one can obtain that

ai+ aqj ≥ m(q2 + 1) + a− 4hq −m,
ai+ aqj ≤ m(q2 + 1) + 4hq + 2h−m− a,

thus,

(m− 1)(q2 + 1) < ai+ aqj < (m+ 1)(q2 + 1).

When ai + aqj = (aj + u)q + v = m(q2 + 1), Eq. (2) can be met. By the division

algorithm, it must be mq = aj + u, which is impossible due to the form of q.

(iv) If 4hq − 4h ≤ aj ≤ (4h+ 1)q + 2h− a, then one can obtain that

ai+ aqj ≥ 4h(q2 + 1) + a− 4h− 4hq,

ai+ aqj ≤ (4h+ 1)(q2 + 1)− (a− 6h− 1)q − a− 2h− 1,

thus,

(4h− 1)(q2 + 1) < ai+ aqj < (4h+ 1)(q2 + 1).

When ai + aqj = (aj + u)q + v = 4h(q2 + 1), Eq. (2) can be met. By the division

algorithm, it must be 4hq = aj + u, which is impossible due to the form of q.

(II) If ` = 1, then s− i ≡ −q(s− j)q2(mod n), which is equivalent to

a(qj − i) ≡ 0(mod q2 + 1). (3)

It is easy to know that a ≤ ai, aj ≤ (4h+ 1)q+ 2h− a. Dividing the range of aj into the

following four cases.

(i) If a ≤ aj ≤ 2q, then one can get that

aqj − ai ≥ (a− 4h+ 1)q + a− 2h,

aqj − ai ≤ 2(q2 + 1)− a− 2,

thus,

0 < aqj − ai < 2(q2 + 1).

When aqj−ai = q2 +1, Eq. (3) can be met. We express ai in the form ai = uq+v.

If t = 1, then a > q. Hence, u, v are within the cases: (1) u = 1, a− q ≤ v ≤ q − 1;

(2) 2 ≤ u ≤ 4h − 1, 0 ≤ v ≤ q − 1; (3) u = 4h, 0 ≤ v ≤ q + 2h − a. If t ≥ 2, then

a < q. Hence, u, v are within the cases: (1) u = 0, a ≤ v ≤ q−1; (2)1 ≤ u ≤ 4h−1,

0 ≤ v ≤ q − 1; (3) u = 4h, 0 ≤ v ≤ q + 2h− a. Thus aqj − ai = (aj − u)q + v. By

the division algorithm, it must be q = aj − u, which contradicts to the form of q.

(ii) If mq + 4h+ 1 ≤ aj ≤ (m+ 1)q, where 2 ≤ m ≤ 4h− 2, then one can get that

aqj − ai ≥ m(q2 + 1) + a−m− 2h,

aqj − ai ≤ (m+ 1)(q2 + 1)− a−m− 1,
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thus,

m(q2 + 1) < aqj − ai < (m+ 1)(q2 + 1),

which is a contradiction.

(iii) If mq + 1 ≤ aj ≤ mq + 4h, where 2 ≤ m ≤ 4h− 1, then one can get that

aqj − ai ≥ m(q2 + 1)− 4hq −m− 2h+ a,

aqj − ai ≤ m(q2 + 1) + 4hq −m− a,

thus,

(m− 1)(q2 + 1) < aqj − ai < (m+ 1)q2 + 1.

When aqj − ai = (aj − u)q + v = m(q2 + 1), Eq. (3) can be met. By the division

algorithm, it must be mq = aj − u, which contradicts to the form of q.

(iv) If (4h− 1)q + 4h+ 1 ≤ aj ≤ (4h+ 1)q + 2h− a, then one can get that

aqj − ai ≥ (4h− 1)(q2 + 1) + a+ 1− 6h,

aqj − ai ≤ (4h+ 1)(q2 + 1)− (a− 2h)q − a− 4h− 1,

thus,

(4h− 1)(q2 + 1) < aqj − ai < (4h+ 1)q2 + 1,

When aqj − ai = (aj − u)q + v = 4h(q2 + 1), Eq. (3) can be met. By the division

algorithm, it must be 4hq = 2aj − u, which contradicts to the form of q.

Therefore, we can deduce that T ∩ (−qT ) = ∅. Hence, C⊥h ⊆ C holds.

Lemma 8: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 2, where

a = 4h2 + (4h + 1)2, h ≥ 2, and t is a positive integer. Suppose that n = q2+1
a , and s = n

2 .

If C is a cyclic code of length n over Fq2 with defining set T =
⋃δ
i=0 Cs−i, and parity-check

matrix H, then rank(HH†) = 1 + 4(k − 1), when

(1) 0 ≤ δ ≤ f(1)− 1, k = 1;

(2) f(k − 1) ≤ δ ≤ f(k)− 1, k = 2, 3.

Proof:

(1) When k = 1, let C be a cyclic code of length n over Fq2 with defining set T = T1 ∪ T2,

where T1 = Cs, T2 =
⋃δ
i=1 Cs−i, and 1 ≤ δ ≤ f(1)− 1. Let C1 and C2 be two cyclic codes

with parity-check matrices H1 and H2 and defining sets T1 and T2, respectively. Then

H =

(
H1

H2

)
.
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Therefore,

HH† =

(
H1H

†
1 H1H

†
2

H2H
†
1 H2H

†
2

)
.

From Lemma 6, we have −qCs = Cs, thus rank(H1H
†
1) = 1. From Lemma 7, we have

rank(H2H
†
2) = 0. As T1 ∩ (−qT2) = ∅, we have rank(H1H

†
2) = rank(H2H

†
1) = 0. Hence,

we can obtain that

rank(HH†) =rank(H1H
†
1) = 1.

(2) When k = 2, let C be a cyclic code of length n over Fq2 with defining set T = T1 ∪ T2 ∪
T3 ∪ T4, where T1 = Cs, T2 =

⋃f(1)−1
i=1 Cs−i, T3 = Cs−f(1), T4 =

⋃δ
i=f(1)+1 Cs−i, and

f(1) + 1 ≤ δ ≤ f(2)− 1. Let C1, C2, C3 and C4 be cyclic codes with parity-check matrices

H1, H2, H3 and H4, and defining sets T1, T2, T3 and T4, respectively. Then

H =


H1

H2

H3

H4

 ,

which implies that

HH† =


H1H

†
1 H1H

†
2 H1H

†
3 H1H

†
4

H2H
†
1 H2H

†
2 H2H

†
3 H2H

†
4

H3H
†
1 H3H

†
2 H3H

†
3 H3H

†
4

H4H
†
1 H4H

†
2 H4H

†
3 H4H

†
4

 .

According to the above proof, rank(H1H
†
1) = 1. As rank(HiH

†
j ) equals to the number

of elements in Ti ∩ (−qTj). Hence, rank(H1H
†
4) = rank(H4H

†
1) = 0, rank(H1H

†
2) =

rank(H2H
†
1) = 0, rank(H1H

†
3) = rank(H3H

†
1) = 0, rank(H3H

†
4) = rank(H4H

†
3) = 0,

rank(H2H
†
2) = 0, rank(H3H

†
3) = 0.

As

− q(s± f(k))

≡s∓ [2h(k + 1) + 1](q2 + 1)− [2h(k + 1) + 1] + [2h− (4h+ 1)(k − 1)]q

a

≡s∓ [2h− (4h+ 1)(k − 1)]q − 2h(k + 1)− 1

a
(mod n),

which implies that −qCs−f(k) = C
s− [2h−(4h+1)(k−1)]q−2h(k+1)−1

a
. Hence, rank(H2H

†
3) =

rank(H3H
†
2) = 2.

Now we prove that rank(H2H
†
4) = rank(H4H

†
2) = 0 and rank(H4H

†
4) = 0. Supppose

that T2∩ (−qT4) 6= ∅, then there exist two integers i, j, where 1 ≤ i ≤ f(1)−1, f(1)+1 ≤
j ≤ f(2)− 1 such that

s− i ≡ −q(s− j)q2`(mod n), ` = 0, 1.
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(I) If ` = 0, then s− i ≡ −q(s− j)(mod n), which is equivalent to

a(i+ qj) ≡ 0(mod q2 + 1). (4)

As a ≤ ai ≤ (4h+ 1)q+ 2h− a, (4h+ 1)q+ 2h+ a ≤ aj ≤ (6h+ 1)q− 2h− 1− a, we

divide aj into the following four cases:

(i) If (4h+ 1)q + 2h+ a ≤ aj ≤ (4h+ 3)q − 4h− 1, then we can obtain

ai+ aqj ≥ (4h+ 1)(q2 + 1) + (2h+ a)q + a− 4h− 1,

ai+ aqj ≤ (4h+ 3)(q2 + 1)− 2h− a− 3,

thus,

(4h+ 1)(q2 + 1) < ai+ aqj < (4h+ 3)(q2 + 1).

When ai + aqj = (4h + 2)(q2 + 1), Eq. (4) can be achieved. We express ai in

the form ai = uq + v. If t = 1, then a > q. Hence, u, v are within the cases:

(1) u = 1, a − q ≤ v ≤ q − 1; (2) 2 ≤ u ≤ 4h − 1, 0 ≤ v ≤ q − 1; (3) u = 4h,

0 ≤ v ≤ q + 2h − a. If t ≥ 2, then a < q. Hence, u, v are within the cases:

(1) u = 0, a ≤ v ≤ q − 1; (2) 1 ≤ u ≤ 4h − 1, 0 ≤ v ≤ q − 1; (3) u = 4h,

0 ≤ v ≤ q + 2h− a. Thus ai+ aqj = (aj + u)q + v. By the division algorithm,

it must be (4h+ 2)q = aj + u, which is impossible due to the form of q.

(ii) If mq ≤ aj ≤ (m+ 1)q− 4h− 1, where 4h+ 3 ≤ m ≤ 6h− 1, then we can obtain

that

ai+ aqj ≥ m(q2 + 1) + a−m,
ai+ aqj ≤ (m+ 1)(q2 + 1) + 2h− a−m− 1,

thus,

m(q2 + 1) < ai+ aqj < (m+ 1)(q2 + 1),

which is a contradiction.

(iii) If mq− 4h ≤ aj ≤ mq− 1, where 4h+ 3 ≤ m ≤ 6h− 1, then we can obtain that

ai+ aqj ≥ m(q2 + 1)− 4hq −m+ a,

ai+ aqj ≤ m(q2 + 1) + 4hq + 2h−m− a,

thus,

(m− 1)(q2 + 1) < ai+ aqj < (m+ 1)(q2 + 1).

When ai + aqj = (aj + u)q + v = m(q2 + 1), Eq. (4) can be achieved. By the

division algorithm, it must be mq = aj+ u, which is impossible due to the form

of q.
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(iv) If (6h− 1)q ≤ aj ≤ (6h+ 1)q − 2h− 1− a, then we can obtain that

ai+ aqj ≥ (6h− 1)(q2 + 1) + a− 6h+ 1,

ai+ aqj ≤ (6h+ 1)(q2 + 1)− (a− 2h)q − a− 4h− 1,

thus,

(6h− 1)(q2 + 1) < ai+ aqj < (6h+ 1)(q2 + 1).

When ai + aqj = (aj + u)q + v = 6h(q2 + 1), Eq. (4) can be achieved. By the

division algorithm, it must be 6hq = aj + u, which is impossible either.

(II) If ` = 1, then s− i ≡ −q(s− j)q2(mod n), which is equivalent to

a(qj − i) ≡ 0(mod q2 + 1).

Similar to the above proof, such case is impossible either.

Similarly, we can prove that rank(H4H
†
4) = 0.

In short,

rank(HH†) =rank(H1H
†
1) + rank(H2H

†
3) + rank(H3H

†
2) = 5.

The proof of the remaining case is similar to the above proof, the desired results follow.

Theorem 3: Let n = q2+1
a , where q is an odd prime power with the form q = (2t−1)a−10h−2,

a = 4h2 +(4h+1)2, h ≥ 2, and t is a positive integer. Then there exist q-ary EAQMDS codes

with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Proof: Let C be a cyclic code of length n over Fq2 with parity-check matrix H. Suppose that

the defining set of C is given by T =
⋃δ
i=0 Cs−i, where 0 ≤ δ ≤ f(3)− 1. Then C is generated

by the polynomial

g(x) = (x− αs−δ) · · · (x− αs−1)(x− αs)(x− αs+1) · · · (x− αs+δ),

which implies that C consists of 2δ + 1 consecutive roots. Hence, the minimum distance

of C is at least 2δ + 2 due to Lemma 1. Then C is a q2-ary cyclic code with parameters

[n, n− (2δ + 1),≥ 2δ + 2]. By Lemma 8, rank(HH†) = 1 + 4(k − 1), when

(1) 0 ≤ δ ≤ f(1)− 1, k = 1;

(2) f(k − 1) ≤ δ ≤ f(k)− 1, k = 2, 3.
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Table 2. Some new EAQMDS codes of length n = q2+1
a

with q = (2t − 1)a − 10h − 2 and
a = 4h2 + (4h+ 1)2 via cyclic codes

a q n [[n, k, d; c]]q d is even

97 269 746 [[746, 749− 2d, d; 1]]269 2 ≤ d ≤ 50

[[746, 753− 2d, d; 5]]269 52 ≤ d ≤ 72

[[746, 757− 2d, d; 9]]269 74 ≤ d ≤ 94

463 2210 [[2210, 2213− 2d, d; 1]]463 2 ≤ d ≤ 86

[[2210, 2217− 2d, d; 5]]463 88 ≤ d ≤ 124

[[2210, 2221− 2d, d; 9]]463 126 ≤ d ≤ 162

205 173 146 [[146, 149− 2d, d; 1]]173 2 ≤ d ≤ 22

[[146, 153− 2d, d; 5]]173 24 ≤ d ≤ 32

[[146, 157− 2d, d; 9]]173 34 ≤ d ≤ 42

353 311 274 [[274, 277− 2d, d; 1]]311 2 ≤ d ≤ 30

[[274, 281− 2d, d; 5]]311 32 ≤ d ≤ 44

[[274, 285− 2d, d; 9]]311 46 ≤ d ≤ 58

1723 8410 [[8410, 8413− 2d, d; 1]]1723 2 ≤ d ≤ 166

[[8410, 8417− 2d, d; 5]]1723 168 ≤ d ≤ 244

[[8410, 8421− 2d, d; 9]]1723 246 ≤ d ≤ 322

541 1571 4562 [[4562, 4565− 2d, d; 1]]1571 2 ≤ d ≤ 122

[[4562, 4569− 2d, d; 5]]1571 124 ≤ d ≤ 180

[[4562, 4573− 2d, d; 9]]1571 182 ≤ d ≤ 238

Therefore, we can obtain q-ary EAQMDS codes with the above parameters from Theorem

2 and the EA-quantum Singleton bound.

Example 1: In Table 2, we list some new EAQMDS codes of length q2+1
a obtained from

Theorem 3, where q is an odd prime power of the form q = (2t − 1)a − 10h − 2, a =

4h2 + (4h+ 1)2, h ≥ 2, and t is a positive integer.

3.1.2 The case q = (2t− 1)a+ (10h+ 2)

Define

f(k) =
[2h(k + 1) + 1]q − 2h+ (4h+ 1)(k − 1)

a
. (5)
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Similar to the discussion of the case q = (2t−1)a−(10h+2), we have the following results.

Lemma 9: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 2, where

a = 4h2 + (4h + 1)2, and h, t are positive integers. Suppose that n = q2+1
a , s = n

2 . If C is

a cyclic code of length n over Fq2 with defining set T =
⋃δ
i=1 Cs−i, where 1 ≤ δ ≤ f(1) − 1,

then C⊥h ⊆ C.

Lemma 10: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 2, where

a = 4h2 + (4h + 1)2, and h, t are positive integers. Suppose that n = q2+1
a , s = n

2 . If C is a

cyclic code of length n over Fq2 with defining set T =
⋃δ
i=0 Cs−i, and parity-check matrix H,

then rank(HH†) = 1 + 4(k − 1), when

(1) 0 ≤ δ ≤ f(1)− 1, k = 1;

(2) f(k − 1) ≤ δ ≤ f(k)− 1,k = 2, 3.

Theorem 4: Let n = q2+1
a , where q is an odd prime power with the form q = (2t−1)a+10h+2,

a = 4h2 + (4h + 1)2, and h, t are positive integers. Then there exist q-ary EAQMDS codes

with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Example 2: In Table 3, we list some new EAQMDS codes of length q2+1
a obtained from

Theorem 4, where q is an odd prime power of the form q = (2t − 1)a + 10h + 2, a =

4h2 + (4h+ 1)2, and h, t are positive integers.

3.2 New EAQMDS codes derived from constacyclic codes

Let η ∈ F∗q2 and ord(η) = q+ 1. In this subsection, we are going to make use of η-constacyclic

codes to construct some new EAQMDS codes of length n = q2+1
a , where q = (2t − 1)a ±

(10h+ 2), a = 4h2 + (4h+ 1)2, and t, h are positive integers.

3.2.1 The case q = (2t− 1)a− (10h+ 2)

Define

f(k) =
(2h+ 4kh+ 3)q + 26h+ 5− k(8h+ 2)

2a
. (6)

Lemma 11: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 2, where

a = 4h2 + (4h+ 1)2, h ≥ 2, and t is a positive integer. Suppose that n = q2+1
a , s = q2+1

2 . If
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Table 3. Some new EAQMDS codes of length n = q2+1
a

with q = (2t − 1)a + 10h + 2 and

a = 4h2 + (4h+ 1)2 via cyclic codes

a q n [[n, k, d; c]]q d is even

29 41 58 [[58, 61− 2d, d; 1]]41 2 ≤ d ≤ 14

[[58, 65− 2d, d; 5]]41 16 ≤ d ≤ 20

[[58, 69− 2d, d; 9]]41 22 ≤ d ≤ 26

157 850 [[850, 853− 2d, d; 1]]157 2 ≤ d ≤ 54

[[850, 857− 2d, d; 5]]157 56 ≤ d ≤ 76

[[850, 861− 2d, d; 9]]157 78 ≤ d ≤ 98

97 313 1010 [[1010, 1013− 2d, d; 1]]313 2 ≤ d ≤ 58

[[1010, 1017− 2d, d; 5]]313 60 ≤ d ≤ 84

[[1010, 1021− 2d, d; 9]]313 86 ≤ d ≤ 110

701 5066 [[5066, 5069− 2d, d; 1]]701 2 ≤ d ≤ 130

[[5066, 5073− 2d, d; 5]]701 132 ≤ d ≤ 188

[[5066, 5077− 2d, d; 9]]701 190 ≤ d ≤ 246

205 647 2042 [[2042, 2045− 2d, d; 1]]647 2 ≤ d ≤ 82

[[2042, 2049− 2d, d; 5]]647 84 ≤ d ≤ 120

[[2042, 2053− 2d, d; 9]647 122 ≤ d ≤ 158

1877 17186 [[17186, 17189− 2d, d; 1]]1877 2 ≤ d ≤ 238

[[17186, 17193− 2d, d; 5]]1877 240 ≤ d ≤ 348

[[17186, 17197− 2d, d; 9]]1877 350 ≤ d ≤ 458

541 593 650 [[650, 653− 2d, d; 1]]593 2 ≤ d ≤ 46

[[650, 657− 2d, d; 5]]593 48 ≤ d ≤ 68

[[650, 661− 2d, d; 9]]593 70 ≤ d ≤ 90
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C is an η-constacyclic code of length n over Fq2 with defining set T =
⋃δ
i=0 Cs−(q+1)i, where

0 ≤ δ ≤ f(1)− 2t, then C⊥h ⊆ C.

Proof: The proof is similar to the proof of Lemma 7, we omit it here.

Lemma 12: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 2, where

a = 4h2 + (4h + 1)2, h ≥ 2, and t is a positive integer. Suppose that n = q2+1
a , s = q2+1

2 .

If C is an η-constacyclic code of length n over Fq2 with defining set T =
⋃δ
i=0 Cs−(q+1)i, and

parity-check matrix H, then rank(HH†) = 4(k − 1), when

(1) 0 ≤ δ ≤ f(1)− 2t, k = 1;

(2) f(1)− 2t+ 1 ≤ δ ≤ f(2)− 1, k = 2;

(3) f(k − 1) ≤ δ ≤ f(k)− 1,k = 3, 4.

Proof:

(1) When k = 1, let C be an η-constacyclic code of length n over Fq2 with defining set

T =
⋃δ
i=0 Cs−(q+1)i, where 0 ≤ δ ≤ f(1)− 2t, then rank(HH†) = 0 follows from Lemma

11.

(2) When k = 2, let C be an η-constacyclic code of length n over Fq2 with defining set

T = T1 ∪ T2 ∪ T3, where T1 =
⋃f(1)−2t
i=0 Cs−(q+1)i, T2 = Cs−(q+1)(f(1)−2t+1), T3 =⋃δ

i=f(1)−2t+2 Cs−(q+1)i, and f(1) − 2t + 2 ≤ δ ≤ f(2) − 1. Let C1, C2 and C3 be con-

stacyclic codes with parity-check matrices H1, H2 and H3, and defining sets T1, T2, and

T3, respectively. Then

H =

H1

H2

H3

 .

Therefore,

HH† =

H1H
†
1 H1H

†
2 H1H

†
3

H2H
†
1 H2H

†
2 H2H

†
3

H3H
†
1 H3H

†
2 H3H

†
3

 .

According to Lemma 11, one can get rank(H1H
†
1) = 0.
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From −qCs = Cs− q+1
2 n in Lemma 4, we have

− q[s± (f(1)− 2t+ 1)(q + 1)]

=− q[s± (6h+ 1)q − 2h− 1

2a
(q + 1)]

=− qs± −(6h+ 1)q2 + (2h+ 1)q

2a
(q + 1)

≡s− q + 1

2
n± −(6h+ 1)(q2 + 1)

2a
(q + 1)± (2h+ 1)q + 6h+ 1

2a
(q + 1)(mod (q + 1)n)

≡s± (2h+ 1)q + 6h+ 1

2a
(q + 1)(mod (q + 1)n),

which implies that −qCs−(f(1)−2t+1)(q+1) = C
s− (2h+1)q+6h+1

2a (q+1)
.

Thus, rank(H2H
†
3) = rank(H3H

†
2) = 0, rank(H1H

†
2) = rank(H2H

†
1) = 2. The following

will indicate that rank(H1H
†
3) = rank(H3H

†
1) = 0 and rank(H3H

†
3) = 0. As a matter of

fact, rank(H1H
†
3) = 0 is equivalent to T1 ∩ (−qT3) = ∅.

Supppose T1 ∩ (−qT3) 6= ∅, then there exist two integers i, j, where 0 ≤ i ≤ f(1) − 2t,

f(1)− 2t+ 2 ≤ j ≤ f(2)− 1 such that

s− (q + 1)i ≡ −q[s− (q + 1)j]q2`(mod (q + 1)n), ` = 0, 1.

(I) If ` = 0, then s− (q + 1)i ≡ −q[s− (q + 1)j](mod (q + 1)n). Since −qCs = Cs− q+1
2 n,

we have

2ai+ 2aqj ≡ q2 + 1(mod 2(q2 + 1)). (7)

As 0 ≤ 2ai ≤ (6h+ 1)q − 2h− 1− 2a, (6h+ 1)q − 2h− 1 + 2a ≤ 2aj ≤ (10h+ 3)q +

10h+ 1− 2a, we divide the discussion into the following six cases as to 2aj:

(i) If (6h+ 1)q− 2h− 1 + 2a ≤ 2aj ≤ (6h+ 3)q+ 18h+ 3, then we can obtain that

2ai+ 2aqj ≥ (6h+ 1)(q2 + 1) + (2a− 2h− 1)q − 6h− 1,

2ai+ 2aqj ≤ (6h+ 3)(q2 + 1) + (24h+ 4)q − 2a− 8h− 4,

thus,

(6h+ 1)(q2 + 1) < 2ai+ 2aqj < (6h+ 4)(q2 + 1).

When 2ai + 2aqj = (6h + 3)(q2 + 1), Eq. (7) is satisfied. We express 2ai in

the form 2ai = uq + v, where 0 ≤ u ≤ 6h − 1, 0 ≤ v ≤ q − 1, and u = 6h,

0 ≤ v ≤ q − 2h − 1 − 2a, so 2ai + 2aqj = (2aj + u)q + v. By the division

algorithm, it must be (6h+ 3)q = 2aj + u, which is impossible according to the

form of q.

(ii) If (6h+ 3)q + 18h+ 4 ≤ 2aj ≤ (6h+ 5)q − (6h+ 1), then we can obtain

2ai+ 2aqj ≥ (6h+ 3)(q2 + 1) + (18h+ 4)q − 6h− 3,

2ai+ 2aqj ≤ (6h+ 5)(q2 + 1)− 2a− 8h− 6,
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thus,

(6h+ 3)(q2 + 1) < 2ai+ 2aqj < (6h+ 5)(q2 + 1),

which is a contradiction.

(iii) If (2m+ 1)q + 1 ≤ 2aj ≤ (2m+ 3)q − 6h− 1, where 3h+ 2 ≤ m ≤ 5h− 2, then

we can obtain

2ai+ 2aqj ≥ (2m+ 1)(q2 + 1) + q − 2m− 1,

2ai+ 2aqj ≤ (2m+ 3)(q2 + 1)− 2a− 2h− 2m− 4,

thus,

(2m+ 1)(q2 + 1) < 2ai+ 2aqj < (2m+ 3)(q2 + 1),

which is a contradiction.

(iv) If (2m+ 1)q − 6h ≤ 2aj ≤ (2m+ 1)q, where 3h+ 2 ≤ m ≤ 5h− 1, then we can

obtain

2ai+ 2aqj ≥ (2m+ 1)(q2 + 1)− 6hq − 2m− 1,

2ai+ 2aqj ≤ (2m+ 1)(q2 + 1) + (6h+ 1)q − 2h− 2a− 2m− 2,

thus,

2m(q2 + 1) < 2ai+ 2aqj < (2m+ 2)(q2 + 1).

When 2ai + 2aqj = (2aj + u)q + v = (2m + 1)(q2 + 1), Eq. (7) is satisfied.

By the division algorithm, it must be (2m+ 1)q = 2aj + u, which is impossible

according to the form of q.

(v) If (10h− 1)q + 1 ≤ 2aj ≤ (10h+ 1)q − 10h− 4, then we can obtain

2ai+ 2aqj ≥ (10h− 1)(q2 + 1) + q − 10h+ 1,

2ai+ 2aqj ≤ (10h+ 1)(q2 + 1)− (4h+ 3)q − 2a− 12h− 2,

thus,

(10h− 1)(q2 + 1) < 2ai+ 2aqj < (10h+ 1)(q2 + 1),

which is a contradiction.

(vi) If (10h+ 1)q − 10h− 3 ≤ 2aj ≤ (10h+ 3)q + 10h+ 1− 2a, then we can obtain

2ai+ 2aqj ≥ (10h+ 1)(q2 + 1)− (10h+ 3)q − 10h− 1,

2ai+ 2aqj ≤ (10h+ 3)(q2 + 1)− (2a− 16h− 2)q − 2a− 12h− 4,

thus,

10h(q2 + 1) < 2ai+ 2aqj < (10h+ 3)(q2 + 1).

When 2ai + 2aqj = (2aj + u)q + v = (10h + 1)(q2 + 1), Eq. (7) is satisfied.

By the division algorithm, it must be (10h+ 1)q = 2aj + u, which is impossible

according to the form of q.
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(II) If ` = 1, then s− (q+ 1)i ≡ −q[s− (q+ 1)j]q2(mod (q+ 1)n), which is equivalent to

2aqj − 2ai ≡ q2 + 1(mod 2(q2 + 1)). (8)

From 0 ≤ 2ai ≤ (6h+ 1)q−2h−1−2a, (6h+ 1)q−2h−1 + 2a ≤ 2aj ≤ (10h+ 3)q+

10h+ 1− 2a, we also divide the discussion into the following six cases as to 2aj:

(i) If (6h+ 1)q − 2h− 1 + 2a ≤ 2aj ≤ (6h+ 3)q + 18h+ 3, then we can obtain

2aqj − 2ai ≥ (6h+ 1)(q2 + 1) + (2a− 8h− 2)q + 2a− 4h,

2aqj − 2ai ≤ (6h+ 3)(q2 + 1) + (18h+ 3)q − 6h− 3,

thus,

(6h+ 1)(q2 + 1) < 2aqj − 2ai < (6h+ 4)(q2 + 1).

When 2aqj − 2ai = (6h + 3)(q2 + 1), Eq. (8) is satisfied. We express 2ai in

the form 2ai = uq + v, where 0 ≤ u ≤ 6h − 1, 0 ≤ v ≤ q − 1, and u = 6h,

0 ≤ v ≤ q − 2h − 1 − 2a, so 2aqj − 2ai = (2aj − u)q + v. By the division

algorithm, it must be (6h+ 3)q = 2aj−u, which is impossible according to the

form of q.

(ii) If (6h+ 3)q + 18h+ 4 ≤ 2aj ≤ (6h+ 5)q, then we can obtain

2aqj − 2ai ≥ (6h+ 3)(q2 + 1) + (12h+ 3)q + 2a− 4h− 2,

2aqj − 2ai ≤ (6h+ 5)(q2 + 1)− 6h− 5,

thus,

(6h+ 3)(q2 + 1) < 2aqj − 2ai < (6h+ 5)(q2 + 1),

which is a contradiction.

(iii) If (2m+ 1)q + 6h+ 1 ≤ 2aj ≤ (2m+ 3)q, where 3h+ 2 ≤ m ≤ 5h− 2, then we

can obtain

2aqj − 2ai ≥ (2m+ 1)(q2 + 1) + 2h+ 2a− 2m,

2aqj − 2ai ≤ (2m+ 3)(q2 + 1)− 2m− 3,

thus,

(2m+ 1)(q2 + 1) < 2aqj − 2ai < (2m+ 3)(q2 + 1),

which is a contradiction.

(iv) If (2m+ 1)q + 1 ≤ 2aj ≤ (2m+ 1)q + 6h, where 3h+ 2 ≤ m ≤ 5h− 1, then we

can obtain

2aqj − 2ai ≥ (2m+ 1)(q2 + 1) + 2a+ 2h− 6hq − 2m,

2aqj − 2ai ≤ (2m+ 1)(q2 + 1) + 6hq − 2m− 1,
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thus,

2m(q2 + 1) < 2aqj − 2ai < (2m+ 2)(q2 + 1).

When 2aqj − 2ai = (2aj − u)q + v = (2m+ 1)(q2 + 1), Eq. (8) is satisfied. By

the division algorithm, it must be (2m + 1)q = 2aj − u, which is impossible

according to the form of q.

(v) If (10h− 1)q + 6h+ 1 ≤ 2aj ≤ (10h+ 1)q − 10h− 4, then we can obtain

2aqj − 2ai ≥ (10h− 1)(q2 + 1) + 2a+ 2− 8h,

2aqj − 2ai ≤ (10h+ 1)(q2 + 1)− (10h+ 4)q − 10h− 1,

thus,

(10h− 1)(q2 + 1) < 2aqj − 2ai < (10h+ 1)(q2 + 1),

which is a contradiction.

(vi) If (10h+ 1)q − 10h− 3 ≤ 2aj ≤ (10h+ 3)q + 10h+ 1− 2a, then we can obtain

2aqj − 2ai ≥ (10h+ 1)(q2 + 1)− (16h+ 4)q − 8h+ 2a,

2aqj − 2ai ≤ (10h+ 3)(q2 + 1)− (2a− 10h− 1)q − 10h− 3,

thus,

10h(q2 + 1) < 2aqj − 2ai < (10h+ 3)(q2 + 1).

When 2aqj − 2ai = (2aj − u)q + v = (10h+ 1)(q2 + 1), Eq. (8) is satisfied. By

the division algorithm, it must be (10h + 1)q = 2aj − u, which is impossible

according to the form of q.

Obviously, rank(H2H
†
2) = 0 can be proved in a similar way. To sum up, we have

rank(HH†) =rank(H1H
†
3) + rank(H3H

†
1) = 4.

The proofs of other cases are similar to the above proof, the desired results follow.

Theorem 5: Let n = q2+1
a , where q is an odd prime power with the form q = (2t−1)a−10h−2,

a = 4h2 +(4h+1)2, h ≥ 2, and t is a positive integer. Then there exist q-ary EAQMDS codes

with the following parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4t+ 2 is even, k = 1;

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4t + 4 ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.



788 New entanglement-assisted MDS quantum constacyclic codes

Proof: Let C be an η-constacyclic code of length n over Fq2 with parity-check matrix H.

Suppose that the defining set of C is given by T =
⋃δ
i=0 Cs−(q+1)i, where 0 ≤ δ ≤ f(4) − 1.

Then the η-constacyclic code C is generated by the polynomial

g(x) = (x− αs−(q+1)δ) · · · (x− αs−(q+1))(x− αs)(x− αs+(q+1)) · · · (x− αs+(q+1)δ),

which implies that C consists of 2δ+1 consecutive roots. Hence, the minimum distance of C is

at least 2δ+2 according to Lemma 1. Then C is a q2-ary η-constacyclic code with parameters

[n, n− (2δ + 1),≥ 2δ + 2]. According to Lemma 12, rank(HH†) = 4(k − 1), when

(1) 0 ≤ δ ≤ f(1)− 2t, k = 1;

(2) f(1)− 2t+ 1 ≤ δ ≤ f(2)− 1, k = 2;

(3) f(k − 1) ≤ δ ≤ f(k)− 1,k = 3, 4.

Therefore, we can obtain q-ary EAQMDS codes with the above parameters from Theorem

2 and the EA-quantum Singleton bound.

Remark 1: Let a = m2+1
5 , m = 10h + 2 and a|(q + m). Quantum MDS codes of length

n = q2+1
a with parameters [[n, n − 2d + 2, d]]q had already been derived from constacyclic

codes in [17], where 2 ≤ d ≤ (3m−1)q−(m+3)
5a is even. It is indeed the quantum MDS codes

of length n = q2+1
4h2+(4h+1)2 . One can easily see that the quantum MDS codes obtained here

coincide with theirs, in other words, we generalize the results in [17].

Example 3: In Table 4, we list some new EAQMDS codes of length q2+1
a obtained from

Theorem 5, where q is an odd prime power of the form q = (2t − 1)a − 10h − 2, a =

4h2 + (4h+ 1)2, h ≥ 2, and t is a positive integer.

3.2.2 The case q = (2t− 1)a+ (10h+ 2)

Define

f(k) =
(2h+ 4kh+ 3)q + k(8h+ 2)− 26h− 5

2a
. (9)

Similar to the discussion of the case q = (2t− 1)a− 10h− 2, we have the following results.

Lemma 13: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 2, where

a = 4h2 + (4h + 1)2, h, t are positive integers. Suppose that n = q2+1
a , s = q2+1

2 . If C
is an η-constacyclic code of length n over Fq2 with defining set T =

⋃δ
i=0 Cs−(q+1)i, where

0 ≤ δ ≤ f(1)− 2t, then C⊥h ⊆ C.

Lemma 14: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 2, where

a = 4h2 + (4h+ 1)2, h, t are positive integers. Suppose that n = q2+1
a , s = q2+1

2 . If C is an η-

constacyclic code of length n over Fq2 with defining set T =
⋃δ
i=0 Cs−(q+1)i, and parity-check

matrix H, then rank(HH†) = 4(k − 1), when
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Table 4. Some new EAQMDS codes of length n = q2+1
a

with q = (2t − 1)a − 10h − 2 and

a = 4h2 + (4h+ 1)2 via constacyclic codes

a q n [[n, k, d; c]]q d is even

97 269 746 [[746, 752− 2d, d; 4]]269 38 ≤ d ≤ 64

[[746, 756− 2d, d; 8]]269 66 ≤ d ≤ 86

[[746, 760− 2d, d; 12]]269 88 ≤ d ≤ 108

463 2210 [[2210, 2216− 2d, d; 4]]463 64 ≤ d ≤ 110

[[2210, 2220− 2d, d; 8]]463 112 ≤ d ≤ 148

[[2210, 2224− 2d, d; 12]]463 150 ≤ d ≤ 186

205 173 146 [[146, 152− 2d, d; 4]]173 18 ≤ d ≤ 28

[[146, 156− 2d, d; 8]]173 30 ≤ d ≤ 38

[[146, 160− 2d, d; 12]]173 40 ≤ d ≤ 48

353 311 274 [[274, 280− 2d, d; 4]]311 24 ≤ d ≤ 38

[[274, 284− 2d, d; 8]]311 40 ≤ d ≤ 52

[[274, 288− 2d, d; 12]]311 54 ≤ d ≤ 66

1723 8410 [[8410, 8416− 2d, d; 4]]1723 124 ≤ d ≤ 210

[[8410, 8420− 2d, d; 8]]1723 212 ≤ d ≤ 288

[[8410, 8424− 2d, d; 12]]1723 290 ≤ d ≤ 366

541 1571 4562 [[4562, 4568− 2d, d; 4]]1571 92 ≤ d ≤ 154

[[4562, 4572− 2d, d; 8]]1571 156 ≤ d ≤ 212

[[4562, 4576− 2d, d; 12]]1571 214 ≤ d ≤ 270



790 New entanglement-assisted MDS quantum constacyclic codes

(1) 0 ≤ δ ≤ f(1)− 2t, k = 1;

(2) f(1)− 2t+ 1 ≤ δ ≤ f(2)− 1,k = 2;

(3) f(k − 1) ≤ δ ≤ f(k)− 1, k = 3, 4.

Theorem 6: Let n = q2+1
a , where q is an odd prime power with the form q = (2t−1)a+10h+2,

a = 4h2 + (4h + 1)2, h, t are positive integers. Then there exist q-ary EAQMDS codes with

the following parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4t+ 2 is even, k = 1;

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4t + 4 ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.

Remark 2: Let a = m2+1
5 , m = 10h+ 2 and a|(q + a−m). Quantum MDS codes of length

n = q2+1
a with parameters [[n, n − 2d + 2, d]]q had already been derived from constacyclic

codes in [17], where 2 ≤ d ≤ (3m−1)q+(m+3)
5a is even. It is indeed the quantum MDS codes

of length n = q2+1
4h2+(4h+1)2 . One can easily see that the quantum MDS codes obtained here

coincide with theirs, in other words, we generalize the results in [17].

Example 4: In Table 5, we list some new EAQMDS codes of length q2+1
a obtained from

Theorem 6, where q is an odd prime power of the form q = (2t − 1)a + 10h + 2, a =

4h2 + (4h+ 1)2, and h, t are positive integers.

4 New EAQMDS codes of length n = q2+1
a with a = h2 + (3h+ 1)2

In this section, we will construct some new EAQMDS codes of length n = q2+1
a with a =

h2 + (3h + 1)2 via η-constacyclic codes and cyclic codes, where q = 2ta ± (10h + 3), h and

t are positive integers. The construction methods of such length is analogous to the case

a = 4h2 + (4h+ 1)2, so we just provide the main results.

From η-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 7: Let q be an odd prime power with the form q = 2ta − 10h − 3, where

a = h2 + (3h + 1)2, h ≥ 2, and t is a positive integer. Assume that n = q2+1
a , and

f(k) = [2h(k+2)+3]q−(6h+2)(k−3)−1
2a . Then there exist q-ary EAQMDS codes with the following

parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 2t(2h+ 2) + 2 is even, k = 1;

(2) [[n, n− 2d+ 4k− 2, d; 4(k− 1)]], where 2f(1)− 2t(2h+ 2) + 4 ≤ d ≤ 2f(2) is even, k = 2

or 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4, 5.

Theorem 8: Let q be an odd prime power with the form q = 2ta + 10h + 3, where

a = h2 + (3h + 1)2, h ≥ 2, and t is a positive integer. Assume that n = q2+1
a , f(k) =

[2h(k+2)+3]q+(6h+2)(k−3)+1
2a . Then there exist q-ary EAQMDS codes with the following param-

eters:
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Table 5. Some new EAQMDS codes of length n = q2+1
a

with q = (2t − 1)a + 10h + 2 and

a = 4h2 + (4h+ 1)2 via constacyclic codes

a q n [[n, k, d; c]]q d is even

29 41 58 [[58, 64− 2d, d; 4]]41 12 ≤ d ≤ 18

[[58, 68− 2d, d; 8]]41 20 ≤ d ≤ 24

[[58, 72− 2d, d; 12]]41 26 ≤ d ≤ 30

157 850 [[850, 856− 2d, d; 4]]157 40 ≤ d ≤ 70

[[850, 860− 2d, d; 8]]157 72 ≤ d ≤ 92

[[850, 864− 2d, d; 12]]157 94 ≤ d ≤ 114

97 313 1010 [[1010, 1016− 2d, d; 4]]313 44 ≤ d ≤ 74

[[1010, 1020− 2d, d; 8]]313 76 ≤ d ≤ 100

[[1010, 1024− 2d, d; 12]]313 102 ≤ d ≤ 126

701 5066 [[5066, 5072− 2d, d; 4]]701 96 ≤ d ≤ 166

[[5066, 5076− 2d, d; 8]]701 168 ≤ d ≤ 224

[[5066, 5080− 2d, d; 12]]701 226 ≤ d ≤ 282

205 647 2042 [[2042, 2048− 2d, d; 4]]647 62 ≤ d ≤ 104

[[2042, 2052− 2d, d; 8]]647 106 ≤ d ≤ 142

[[2042, 2056− 2d, d; 12]]647 144 ≤ d ≤ 180

1877 17186 [[17186, 17192− 2d, d; 4]]1877 176 ≤ d ≤ 302

[[17186, 17196− 2d, d; 8]]1877 304 ≤ d ≤ 412

[[17186, 17200− 2d, d; 12]]1877 414 ≤ d ≤ 522

541 593 650 [[650, 656− 2d, d; 4]]593 36 ≤ d ≤ 58

[[650, 660− 2d, d; 8]]593 60 ≤ d ≤ 80

[[650, 664− 2d, d; 12]]593 82 ≤ d ≤ 102
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(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 2t(2h+ 2)− 2 is even, k = 1;

(2) [[n, n− 2d+ 4k − 2, d; 4(k − 1)]], where 2f(1)− 2t(2h+ 2) ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4, 5.

Remark 3: Let a = m2+1
10 , m = 10h+3 and a|(q+m) or a|(q+a−m). Quantum MDS codes

of length n = q2+1
a had already been derived from constacyclic codes in [17], which is indeed

the quantum MDS codes of length n = q2+1
h2+(3h+1)2 . One can easily see that the quantum MDS

codes obtained here coincide with theirs, in other words, we generalize the results in [17].

From cyclic codes, new EAQMDS codes are also obtained as follows:

Theorem 9: Let q be an odd prime power with the form q = 2ta − 10h − 3, where a =

h2 + (3h+ 1)2, h ≥ 2, and t is a positive integer. Assume that n = q2+1
a , and

f(k) =
[2h(k + 2) + k2 + 4− 3k]q + (10h+ 3)k2 + 28h+ 8− (36h+ 11)k

2a
.

Then there exist q-ary EAQMDS codes with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Theorem 10: Let q be an odd prime power with the form q = 2ta + 10h + 3, where

a = h2 + (3h+ 1)2, h and t are positive integers. Assume that n = q2+1
a , and

f(k) =
[2h(k + 2) + k2 + 4− 3k]q + (36h+ 11)k − (10h+ 3)k2 − 28h− 8

2a
.

Then there exist q-ary EAQMDS codes with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Example 5: In Table 6, we list some new EAQMDS codes of length q2+1
a obtained from

Theorems 7-10, where q is an odd prime power of the form q = 2ta±(10h+3), a = h2+(3h+1)2,

h and t are positive integers.

5 New EAQMDS codes of length n = q2+1
a with a = (h+ 1)2 + (3h+ 2)2

In this section, we will construct some new EAQMDS codes of length n = q2+1
a with a =

(h + 1)2 + (3h + 2)2 via η-constacyclic codes and cyclic codes, where q = 2ta ± (10h + 7), h

and t are positive integers. The construction methods of such length is analogous to the case

a = 4h2 + (4h+ 1)2, so we just provide the main results.
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Table 6. Some new EAQMDS codes of length n = q2+1
a

with a = h2 + (3h+ 1)2

a q n [[n, k, d; c]]q d is even

53 83 130 [[130, 136− 2d, d; 4]]83 16 ≤ d ≤ 30

[[130, 140− 2d, d; 8]]83 32 ≤ d ≤ 36

[[130, 144− 2d, d; 12]]83 38 ≤ d ≤ 42

[[130, 148− 2d, d; 16]]83 44 ≤ d ≤ 48

[[130, 133− 2d, d; 1]]83 2 ≤ d ≤ 22

[[130, 137− 2d, d; 5]]83 24 ≤ d ≤ 28

[[130, 141− 2d, d; 9]]83 30 ≤ d ≤ 38

109 251 578 [[578, 584− 2d, d; 4]]251 32 ≤ d ≤ 62

[[578, 588− 2d, d; 8]]251 64 ≤ d ≤ 76

[[578, 592− 2d, d; 12]]251 78 ≤ d ≤ 90

[[578, 596− 2d, d; 16]]251 92 ≤ d ≤ 104

[[578, 581− 2d, d; 1]]251 2 ≤ d ≤ 46

[[578, 585− 2d, d; 5]]251 48 ≤ d ≤ 60

[[578, 589− 2d, d; 9]]251 62 ≤ d ≤ 78

Due to η-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 11: Let q be an odd prime power with the form q = 2ta − 10h − 7, where

a = (h + 1)2 + (3h + 2)2, h and t are positive integers. Suppose that n = q2+1
a , and f(k) =

[4h+1+2k(h+1)]q+2k(3h+2)−18h−13
2a . Then there exist q-ary EAQMDS codes with the following

parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4ht+ 2 is even, k = 1;

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4ht + 4 ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.

Theorem 12: Let q be an odd prime power with the form q = 2ta + 10h + 7, where

a = (h + 1)2 + (3h + 2)2, h and t are positive integers. Suppose that n = q2+1
a , and f(k) =

[4h+1+2k(h+1)]q+18h+13−2k(3h+2)
2a . Then there exist q-ary EAQMDS codes with the following

parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4ht− 2 is even, k = 1;

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4ht ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.
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Remark 4: Let a = m2+1
10 , m = 10h+7 and a|(q+m) or a|(q+a−m). Quantum MDS codes

of length n = q2+1
a had already been derived from constacyclic codes in [17], which is indeed

the quantum MDS codes of length n = q2+1
(h+1)2+(3h+2)2 . One can easily see that the quantum

MDS codes obtained here coincide with theirs, in other words, we generalize the results in

[17].

Due to cyclic codes, new EAQMDS codes are obtained as follows:

Theorem 13: Let q be an odd prime power with the form q = 2ta − 10h − 7, where

a = (h + 1)2 + (3h + 2)2, h and t are positive integers. Suppose that n = q2+1
a , and

f(k) = [2h+1+k(h+1)]q+k(3h+2)−4h−3
a . Then there exist q-ary EAQMDS codes with the fol-

lowing parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Theorem 14: Let q be an odd prime power with the form q = 2ta + 10h + 7, where

a = (h + 1)2 + (3h + 2)2, h ≥ 2, and t is a positive integer. Suppose that n = q2+1
a ,

and f(k) = [2h+1+k(h+1)]q+4h+3−k(3h+2)
a . Then there exist q-ary EAQMDS codes with the

following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Example 6: In Table 7, we list some new EAQMDS codes of length q2+1
a obtained from

Theorems 11-14, where q is an odd prime power of the form q = 2ta ± (10h + 7), a =

(h+ 1)2 + (3h+ 2)2, and h, t are positive integers.

6 New EAQMDS codes of length n = q2+1
a with a = (2h+ 2)2 + (4h+ 3)2

In this section, we will construct some new EAQMDS codes of length n = q2+1
a with a =

(2h+2)2 +(4h+3)2 via η-constacyclic codes and cyclic codes, where q = (2t−1)a±(10h+8),

h and t are positive integers. The construction methods of such length is analogous to the

case a = 4h2 + (4h+ 1)2, so we just provide the main results.

According to η-constacyclic codes, new EAQMDS codes are obtained as follows:

Theorem 15: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 8,

where a = (2h + 2)2 + (4h + 3)2, h and t are positive integers. Let n = q2+1
a , f(k) =

[2h+5+k(4h+2)]q+34h+27−k(12h+10)
2a . Then there exist q-ary EAQMDS codes with the following

parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4t+ 2 is even, k = 1;



Hangyu Liu, Sujuan Huang, Liqi Wang, and Shixin Zhu 795

Table 7. Some new EAQMDS codes of length n = q2+1
a

with a = (h+ 1)2 + (3h+ 2)2

a q n [[n, k, d; c]]q d is even

29 157 850 [[850, 856− 2d, d; 4]]157 40 ≤ d ≤ 70

[[850, 860− 2d, d; 8]]157 72 ≤ d ≤ 92

[[850, 864− 2d, d; 12]]157 94 ≤ d ≤ 114

[[850, 853− 2d, d; 1]]157 2 ≤ d ≤ 54

[[850, 857− 2d, d; 5]]157 56 ≤ d ≤ 76

[[850, 861− 2d, d; 9]]157 78 ≤ d ≤ 98

73 173 410 [[410, 416− 2d, d; 4]]173 28 ≤ d ≤ 50

[[410, 420− 2d, d; 8]]173 52 ≤ d ≤ 64

[[410, 424− 2d, d; 12]]173 66 ≤ d ≤ 78

[[410, 413− 2d, d; 1]]173 2 ≤ d ≤ 38

[[410, 417− 2d, d; 5]]173 40 ≤ d ≤ 52

[[410, 421− 2d, d; 9]]173 54 ≤ d ≤ 66

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4t + 4 ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.

Theorem 16: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 8,

where a = (2h + 2)2 + (4h + 3)2, h and t are positive integers. Let n = q2+1
a , f(k) =

[2h+5+k(4h+2)]q+k(12h+10)−34h−27
2a . Then there exist q-ary EAQMDS codes with the following

parameters:

(1) [[n, n− 2d+ 2, d]], where 2 ≤ d ≤ 2f(1)− 4t+ 2 is even, k = 1;

(2) [[n, n − 2d + 4k − 2, d; 4(k − 1)]], where 2f(1) − 4t + 4 ≤ d ≤ 2f(2) is even, k = 2 or

2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 3, 4.

Remark 5: Let a = m2+1
5 , m = 10h + 8 and a|(q + m) or a|(q + a −m). Quantum MDS

codes of length n = q2+1
a had already been derived from constacyclic codes in [17], which is

indeed the quantum MDS codes of length n = q2+1
(2h+2)2+(4h+3)2 . One can easily see that the

quantum MDS codes obtained here coincide with theirs, in other words, we generalize the

results in [17].

According to cyclic codes, new EAQMDS codes are obtained as follows:

Theorem 17: Let q be an odd prime power with the form q = (2t − 1)a − 10h − 8, where
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a = (2h+ 2)2 + (4h+ 3)2, h and t are positive integers. Let n = q2+1
a , and

f(k) =
[4(k + 1)h+ (7− k)k]q + 2(19h+ 15)k − 2(5h+ 4)k2 − 32h− 26

2a
.

Then there exist q-ary EAQMDS codes with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Theorem 18: Let q be an odd prime power with the form q = (2t − 1)a + 10h + 8, where

a = (2h+ 2)2 + (4h+ 3)2, h and t are positive integers. Let n = q2+1
a , and

f(k) =
[4(k + 1)h+ (7− k)k]q + 2(5h+ 4)k2 + 32h+ 26− 2(19h+ 15)k

2a
.

Then there exist q-ary EAQMDS codes with the following parameters:

(1) [[n, n− 2d+ 3, d; 1]], where 2 ≤ d ≤ 2f(1) is even, k = 1;

(2) [[n, n− 2d+ 4k − 1, d; 1 + 4(k − 1)]], where 2f(k − 1) + 2 ≤ d ≤ 2f(k) is even, k = 2, 3.

Example 7: In Table 8, we list some new EAQMDS codes of length q2+1
a obtained from

Theorems 15-18, where q is an odd prime power of the form q = (2t − 1)a ± (10h + 8),

a = (2h+ 2)2 + (4h+ 3)2, and h, t are positive integers.

7 Conclusion

In this paper, by selecting different defining sets of η-constacyclic codes and cyclic codes,

some EAQMDS codes of length n = q2+1
a with a = 4h2 + (4h + 1)2, a = h2 + (3h + 1)2,

a = (h + 1)2 + (3h + 2)2, and a = (2h + 2)2 + (4h + 3)2 were respectively constructed

by exploiting small pre-shared maximally entangled states c, where h is a positive integer.

Comparing their parameters with the known EAQMDS codes in Table 1, one can see that

the obtained EAQMDS codes are new in the sense that their parameters are not covered.
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