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Schmidt decomposition (SD) has been proven to be an important tool in quantum in-

formation and computation. Aćın et al. proposed the SD for three qubits, but in the
meanwhile, they indicated that it is possible to have two different SDs for the same

state. The more challenging quest of finding the sufficient and necessary condition for

the uniqueness of SD has never been undertaken. In this paper, we propose a necessary
and sufficient condition for the uniqueness of SD for three qubits. By examining the

condition, one can tell what state has one SD and what state has two SDs without ac-

tually performing the Schmidt decomposition. We investigate the relation between the
uniqueness of SD and the von Neumann entanglement entropy (vNEE). To this end, we

prove that any state having the maximal vNEE S(ρx) = ln 2, x = A,B, or C must have a
unique SD. This means if a state has two SDs, then the state does not have the maximal

vNEE. Therefore, we should not choose a state having two SDs for its maximal vNEE

for quantum information theory. In this paper, we also give all the SD states that have
the maximal vNEE and a unique SD, as well as all the SD states that have a unique SD.

Keywords: GHZ SLOCC class, LU equivalence, qubits, Schmidt decomposition, von
Neumann entanglement entropy (vNEE)

1 Introduction

SD for pure states has proven to be an important tool in quantum information and compu-

tation [1, 2, 3]. It is known that for a bipartite system, a pure state of a bipartite system can

be written in the following canonical form.

|ψ〉AB =
∑

λi|iA〉|iB〉, (1)
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where |iA〉 are orthonormal states for system A and |iB〉 are orthonormal states for system

B, λi ≥ 0 and
∑
λ2i = 1. λi are referred to Schmidt coefficients. It is known that all the

information about the non-local properties that the state possesses is contained in the positive

Schmidt coefficients [4].

Quantum entanglement is a unique physical resource in quantum information and compu-

tation, such as quantum communication, quantum cryptography, and quantum teleportation

[4]. Recently, the entanglement preparation on the quantum cloud was studied [6, 7]. Lots of

efforts have been devoted to studying the characterization, the measurement, and the clas-

sification of the entanglement via SD [8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25]. A

method to transform pure states of three qubits into SD under local unitary (LU) operators

was proposed [8, 9]. Under Stochastic local operations and classical communication (SLOCC),

pure states of three qubits were partitioned into six SLOCC equivalence classes: GHZ, W,

A-BC, B-AC, C-AB, and A-B-C [5]. Via the SD of three qubits, it is convenient to study the

classification of three qubits under SLOCC and LU [8, 9, 21, 30, 29]. For example, SDs for

three qubits were partitioned into five types [8, 9], while SDs for the GHZ SLOCC class were

partitioned into ten families under LU [29]. Via SD, Enriquez et al. studied the minimal

decomposition entropy [22, 8], Tajima investigated LOCC transformation [23], and Liu et al.

studied linear monogamy of entanglement [24]. There is a close relationship between Schmidt

decomposition and purification.

Furthermore, Carteret et al. explored the SD for the multipartite system [14]. Kraus

transformed a pure state of the multipartite system into a standard form and proved that

two states are LU equivalent if and only if their standard forms coincide [26, 27]. Vicente

et al. proposed a different decomposition of three qubits by means of five parameters under

LU [10]. Li and Qiao proposed the canonical forms for pure and mixed states of multipartite

systems with arbitrary dimensions [20].

Aćın et al. first proposed SD and investigated the uniqueness of SD for three qubits [8, 9].

A pure state of three qubits has eight complex coefficients while its SD has five non-negative

coefficients and a real phase parameter because SD has five local bases product states (LBPS).

It is known that a pure state and its SD are equivalent under LU. It is convenient to study

entanglement property and entanglement classification via SD. A different SD procedure was

proposed in [35].

In [8, 9], the authors indicated that the equation detLA0 = 0 has generically two different

solutions, so two different SDs are possible for the same state. In [8, 9], for the uniqueness of

SD, the phase factor is limited to 0 ≤ χ ≤ π. It means that the SD with phase of χ ∈ (π, 2π)

is discarded. Thus, the SD with the phase of χ ∈ (0, π) remains. When the phase χ is 0 or

π, one of two possible SDs is taken by the smallest λ1 else the smallest λ0 [9].

We explain why it is important to discuss the uniqueness of SD below. (1). For the

state |ψ〉 having a unique SD, subjected to local random unitary noise, the SD of |ψ〉 does

not change. That is, U1 ⊗ U2 ⊗ U3|ψ〉, where Ui are unitary, and |ψ〉 have the same SD. It

means that though |ψ〉 becomes a different state, but its SD remains the same. In the case

for which a different SD is obtained, it means that the state is interacting with a non-local

unitary system. (2). When SD is used for entanglement classification, we need to know how

many SDs a state has. Of course, it is easy to partition states with a unique SD via SD. For

example, consider the state −p1|001〉 − p2|010〉 − p3|100〉 + q0|111〉, where pi, i = 1, 2, 3 and
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q0 are non-zero real numbers, which corresponds to a black hole according to [31], ref. Ex. 8

in Section 4. From Ex. 8, the state has a unique SD. Using the unique SD, we partition the

states and the corresponding black holes under LU in [29, 36]. One can also see that when a

state has a unique SD, then if another state has a different SD, then the two states are LU

inequivalent. But, when a state has two SDs, the situation becomes a bit complicated. (3).

It is well known that vNEE is an important entanglement measure for quantum information

theory. We will show that a state having the maximal vNEE must have a unique SD. By

contrapositive, if a state has two SDs, then it does not have the maximal vNEE.

In this paper, we propose a necessary and sufficient condition for the uniqueness of SD for

three qubits. By the condition, one can know a three-qubit pure state has one or two SDs

without transforming the state into SD. We investigate the relation between the uniqueness

of SD and the maximal vNEE.

2 Steps for Schmidt decomposition

Aćın et al. [8] proposed SD for three qubits by transforming any pure three-qubit state into

the canonical form (Eq. (14)) under LU. Let |ψ〉 and |ψ′〉 be any pure states of three qubits.

Then, from [5, 26], |ψ′〉 is LU equivalent to |ψ〉 if and only if there are local unitary operators

UA, UB , and UC such that |ψ′〉 = UA ⊗ UB ⊗ UC |ψ〉.
The following shows how to find the three unitary matrices UA, UB , and UC to get an

SD.

Let |ψ〉 =
∑
i,j,k cijk|ijk〉 and |ψ′〉 =

∑
i,j,k c

′
ijk|ijk〉, with i, j, k ∈ {0, 1}, and

C0 =

(
c0 c1
c2 c3

)
, C1 =

(
c4 c5
c6 c7

)
,

C ′0 =

(
c′0 c′1
c′2 c′3

)
, C ′1 =

(
c′4 c′5
c′6 c′7

)
. (2)

Then, from [32, 33, 30], obtain(
C ′0
C ′1

)
= (UA ⊗ UB)

(
C0

C1

)
(UC)T . (3)

Let the unitary matrix UA =
(
uAij
)
, i, j = 0, 1. Then, from Eq. (3), we have(

C ′0
C ′1

)
=

(
uA00U

B uA01U
B

uA10U
B uA11U

B

)(
C0

C1

)
(UC)T

=

(
UBLA0 (UC)T

UBLA1 (UC)T

)
, (4)

where

LA0 = uA00C0 + uA01C1, (5)

LA1 = uA10C0 + uA11C1. (6)

To get SD, choose UA such that detLA0 = 0 as Aćın et al. did in [8]. We derive the
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equation detLA0 = 0 as follows [30]. Let

α = c0c3 − c1c2, (7)

β = c0c7 − c1c6 − c2c5 + c3c4, (8)

γ = c4c7 − c5c6, (9)

τ = β2 − 4αγ. (10)

Note that for GHZ SLOCC class, τ 6= 0.

From Eq. (5), we can calculate detLA0 . Equation detLA0 = 0 is equivalent to:

α(uA00)2 + βuA01u
A
00 + γ(uA01)2 = 0. (11)

By solving Eq. (11) we can get uA00 and uA01. UA is a unitary matrix. Therefore uA10 and

uA11 can be obtained via the properties of a unitary matrix. We compute a UA for each case

of α, β, γ, and τ in Table A.1 in Appendix A.

Next, we calculate the Singular Value Decomposition (SVD) of LA0 to get λ0. We can get

the SVD of LA0 by considering the degenerate LA0 : there are unitary matrices UB and UC

such that

UBLA0 (UC)T = diag(λ0, 0), (12)

where λ0 ≥ 0, and λ0 and 0 are called singular values of LA0 . UB and UC can be found

following the steps in Appendix B.

Next, with UB and UC , we can calculate UBLA1 (UC)T to get other λ’s and the phase. Let

UBLA1 (UC)T =

(
λ1e

iχ1 λ2e
iχ2

λ3e
iχ3 λ4e

iχ4

)
. (13)

Let χ = (χ1 − χ2 − χ3 + χ4) mod(2π). From [8, 30], we obtain the SD of |ψ〉 as follows,

λ0|000〉+ λ1e
iχ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (14)

where λi ≥ 0 are called Schmidt coefficients, and
∑4
i=0 λ

2
i = 1; 0 ≤ χ < 2π is called the

phase of the SD. For simplicity, the state in Eq. (14) is written as (λ0, λ1e
iχ, λ2, λ3, λ4).

2.1 The number of solutions of Eq. (11) and the number of SDs

In [8], the authors indicated that Eq. (11) has generically two different solutions. Specially

when the phase is 0 or π, two canonical forms exist in general [9].

2.1.1 The number of solutions of Eq. (11)

There are three cases for the number of solutions of Eq. (11) (Ref. Table A.1).

Case 1. α = β = γ = 0. For the case, clearly, any unitary matrix satisfies Eq. (11). It

means Eq. (11) has infinite solutions.

Case 2. Subcase 2.1. α = β = 0 but γ 6= 0, Subcase 2.2. α 6= 0 but β = γ = 0, Subcase

2.3. αβγ 6= 0 but τ = 0. For Case 2, one can see that Eq. (11) has one solution.

Case 3. Subcase 3.1. α = γ = 0 but β 6= 0, Subcase 3.2. α = 0 but βγ 6= 0, Subcase 3.3.

αβ 6= 0 but γ = 0, Subcase 3.4. αγ 6= 0 but β = 0, Subcase 3.5. αβγτ 6= 0. For case 3, one

can see that Eq. (11) has two solutions.
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2.1.2 A correspondence between the number of solutions of Eq. (11) and the number of SDs

We have the following cases ((i)-(iv)) for the solutions of Eq. (11) and the corresponding

number of SDs.

Case (i). If Eq. (11) has only one solution, then the state has only one SD.

Case (ii). Eq. (11) has two solutions, and the state also has two SDs. For this case, we

have the following examples (a), (b), (c), and (d).

(a). For Ex. 2 in Sec. 4, it belongs to Subcase 3.1. The state has two SDs which have the

phase of 0.

(b). For Ex.3 in Sec. 4, the state belongs to Subcase 3.2. The state has two SDs. One of

them has phase π while the other one’s phase cannot be determined.

(c). For Ex. 4 in Sec. 4, it belongs to Subcase 3.2. It has two SDs. One SD has the phase

of −π/4 while the other one has the phase of π − arctan 2.

(d). For the state λ0|000〉 + λ4|111〉, where λ0 > 0, λ4 > 0, and λ20 + λ24 = 1, itself is of

the form SD. It belongs to Subcase 3.1. Clearly, λ4|000〉+λ0|111〉 is also an SD of that state.

This is because λ4|000〉 + λ0|111〉 = σx ⊗ σx ⊗ σx(λ0|000〉 + λ4|111〉). Thus, when λ0 6= λ4,

λ0|000〉 + λ4|111〉 have two SDs: itself and λ4|000〉 + λ0|111〉. But their phases cannot be

determined.

Case (iii). Eq. (11) has two solutions, but the state has only one SD. For this case, we

have the following examples (a) and (b).

(a). When λ0 = λ4, λ0|000〉 + λ4|111〉 is just GHZ state 1√
2
(|000〉 + |111〉). For the

GHZ state, one can check it has only one SD. i.e. itself though Eq. (11) has two solutions.

Generally, if a GHZ state is an SD of a state, then the GHZ state is a unique SD of the state.

(b). For Ex. 8 in Sec. 4, it belongs to case 3.4. For the state, Eq. (11) has two solutions.

However, we show it has only one SD in Sec. 4.

Case (iv). Eq. (11) has two solutions, and the state has two SDs ignoring the phases of

SDs. We have the following example.

For Ex. 5 in Sec. 4, it belongs to case 3.3. It has two SDs (ignoring phases). However, we

know (1/
√

6,
√

3/6eiϕ2 , 0, 0,
√

3/2) is LU equivalent to (1/
√

6,
√

3/6, 0, 0,
√

3/2) for any phase

ϕ2 [29]. Thus, we can also say the state has infinite SDs.

For any pure state of three qubits, if it has a unique canonical form in Eq. (14), we say

the Schmidt decomposition of the state is unique. In this paper, we give a necessary and

sufficient condition to determine a state has one or two SDs without transforming a state into

the canonical form in Eq. (14). The condition is expressed via the coefficients ci. Therefore,

it is easy to calculate it.

It is well known that pure states of three qubits were partitioned into six SLOCC classes:

GHZ, W, A-BC, B-AC, C-AB, and A-B-C [5]. We can find all the solutions for UA by solving

Eq. (11) for each SLOCC class.

From [28] we obtain Table A.1 in Appendix A, in which num sol is the number of the

solutions of Eq. (11). For α = β = γ = τ = 0, i.e., for B-AC, C-AB, and A-B-C SLOCC

classes in Table A.1, any unitary matrix satisfies Eq. (11), thus there are infinite solutions

for Eq. (11).
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3 A necessary and sufficient condition for the uniqueness of SD for the phases

between 0 and 2π

There is no necessary relation between the number of SDs and the number of solutions to Eq.

(11).

3.1 The uniqueness of SD for two qubits

For two qubits, let |ψ〉 =
∑3
i=0 ci|i〉 be a pure state of two qubits. If |ψ〉 has a canonical

form α|00〉 + β|11〉 (α 6= β), then β|00〉 + α|11〉 is also a canonical form of |ψ〉 because

β|00〉+ α|11〉 = σx ⊗ σx(α|00〉+ β|11〉). Clearly, 1√
2
(|00〉+ |11〉) is a unique canonical form.

One can see the following result holds.

Result 1. A two-qubit state has the maximal vNEE if and only if the state has a unique

canonical form.

Under α ≤ β, 1
2 |00〉 +

√
3
2 |11〉 is a unique SD while

√
3
2 |00〉 + 1

2 |11〉 is not an SD. Under

α ≤ β, each state has a unique SD. Of course, when each state has a unique SD, Result 1

becomes meaningless.

3.2 The uniqueness of SD for three qubits

For three qubits, from Sec. 2.1, one can see that a three-qubit state may have one or more

than one SD. It is known that SD is unique for SLOCC classes A-BC, B-AC, C-AB, and A-

B-C when SDs of the SLOCC classes are considered as the ones of two-qubit states, although

Eq. (11) has infinite solutions for SLOCC classes B-AC, C-AB, and A-B-C.

To make the Schmidt decomposition unique for all states, the authors of [8, 9] applied the

following two restrictions:

Restriction 1. Limiting the phase factor to [0, π]

Under the restriction, the SD with the phase θ ∈ (π, 2π) is discarded while the SD with the

phase θ ∈ (0, π) remains. For example, for Ex. 4 in Section 4, by the procedure in [5], a calcu-

lation yields two SDs |Ξ1〉 = (
√
2
2 ,
√
5
4 e

i(π−arctan 2), 14 ,
1
4 ,

1
4 ) and |Ξ2〉 = (

√
2
4 ,
√
2
4 e
−iπ4 , 12 ,

1
2 ,

1
2 ).

By Restriction 1, |Ξ2〉 is discarded. Then, the state has a unique SD |Ξ1〉.
Restriction 2. When the phase is 0 or π, arbitrarily taking one of the two SDs

When the phase is 0 or π, there may be two SDs. Then, the one with the smallest λ1 is

taken; when the two SDs have the same λ1, the one with the smallest λ0 is taken [9].

For example, for Ex. 2 in Section 4, there are two SDs, which are |ν1〉 ={ 1√
5
, (7

5 )2 1√
5
,

7
25

1√
5
, 7

25
1√
5
, 1

25
1√
5
} and |ν2〉 ={ 2√

5
, 1

2 ( 7
5 )2 1√

5
, 7

50
1√
5
, 7

50
1√
5
, 1

50
1√
5
}. For |ν1〉 and |ν2〉, their

phases are 0. By Restriction 2, |ν1〉 is discarded. Similarly, take α|000〉+β|111〉, where α < β,

as SD for the uniqueness while discard β|000〉+ α|111〉.
Unfortunately, the two restrictions cannot guarantee the uniqueness of SD for all states.

It needs two additional restrictions:

Restriction 3. Ignoring the phases of SDs belonging to W SLOCC class

Let |W1〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉+ λ3|110〉, where λi 6= 0, i = 0, 1, 2, 3. One can

see that |W1〉 belongs to W SLOCC class. Let UA = diag(1, eiθ), UB = UC = diag(1, e−iθ),

and |W2〉 = UA ⊗ UB ⊗ UC |W1〉, where θ is any real number. Then, a calculation yields

|W2〉 = λ0|000〉 + λ1e
iϕ′ |100〉 + λ2|101〉 + λ3|110〉, where ϕ′ = ϕ + θ. We can make ϕ′

belong to (0, π) because θ is any real number. Thus, there are infinite |W2〉 which are LU

equivalent to |W1〉. To make SD unique for |W1〉, it needs to ignore the phases. Thus, two
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SDs belonging to W SLOCC class are LU equivalent if and only if their Schmidt coefficients

are equal, respectively [30]. Thus, the SD of the W SLOCC class is unique under Restriction

3.

Restriction 4. Ignoring the phases of SDs with λ2λ3 = 0 and λ0λ1λ4 6= 0

Clearly, the SDs belong to the GHZ SLOCC class. For example, let |G〉 = λ0|000〉 +

λ1e
iω|100〉 + λ2|101〉 + λ4|111〉, where λi 6= 0, i = 0, 1, 2, 4. Let UA = diag(eiφ, ei2φ), UB =

diag(e−iφ, e−iφ), and UC = diag(1, e−iφ), and |G1〉 = UA ⊗ UB ⊗ UC |G〉, where φ is any

real number. A calculation yields |G1〉 = λ0|000〉 + λ1e
iω′ |100〉 + λ2|101〉 + λ4|111〉, where

ω′ = ω + φ. We can make ω′ belong to (0, π) because φ is any real number. Thus, |G〉 has

infinite SDs, which possess the same Schmidt coefficients but different phases. Similarly, there

are infinite SDs for |H〉 = λ0|000〉+λ1e
iϕ|100〉+λ3|101〉+λ4|111〉, where λi 6= 0, i = 0, 1, 3, 4,

and |Q〉 = λ0|000〉 + λ1e
iϕ|100〉 + λ4|111〉, where λi 6= 0, i = 0, 1, 4. To make SD unique for

|G〉, |H〉 and |Q〉, it needs to ignore their phase. Thus, the states |G〉, |H〉 and |Q〉 have a

unique SD if and only if % = 1 after ignoring their phases [29].

Under the four restrictions, each state of three qubits has a unique SD.

3.3 We don’t make SD unique for all states in this paper

From the above discussion, by ignoring the phases of SD, SD of W SLOCC class is unique.

While the situation becomes complicated for GHZ SLOCC class. Via Table A.1, one can see

that there are always two solutions for Eq. (11) for UA for GHZ SLOCC class while a state

may have one or two SDs. For example, Eq. (11) has two solutions for GHZ state, but GHZ

state has a unique SD, i.e., itself.

Clearly, when we make SD unique for all states, it becomes meaningless to say if a state

has a property then the state has a unique SD. For example, Result 1 becomes meaningless

when each state has a unique SD. We don’t make the SD unique for all states in this paper.

To consider all the SDs produced by the SD procedure [5,6], Restrictions 1 and 2 in [5,6] are

canceled in this paper. We use natural phase to [0, 2π) instead of the phases to [0,π], thus

Ex. 4 in Section 4 has two SDs |Ξ1〉 and |Ξ2〉. After canceling Restriction 2, then Ex.2 in

Section 4 of this paper has two SDS |ν1〉 and |ν2〉.
Some states have a unique SD, and some have two SDs. How do we know that the states

in Ex. 6 and Ex. 8 in Section 4 have a unique SD while the states in Ex. 2 and Ex. 4 have

two SDs before going through the Schmidt Decomposition procedure? In this paper, we try

to answer this question. So far, there is no criteria by which one can determine a three-qubit

state |ψ〉 =
∑
i,j,k cijk|ijk〉 has one or two SDs. In this section, we give a necessary and

sufficient condition for the uniqueness of SD for the GHZ SLOCC class without performing

the procedure for SD.

One can see that it has a meaning to explore what states have one or two SDs as it has a

meaning to study real or complex roots of quadratic equations.
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3.4 Uniqueness of SD for the states (λ0, λ1e
iχ, λ2, λ3, λ4) of GHZ SLOCC class

Let |Ψ〉 be the state (λ0, λ1e
iχ, λ2, λ3, λ4). Then, for |Ψ〉, the following were defined [30, 29].

% =
√

(λ0λ4)2 + |γ|2/
√

(λ22 + λ24)(λ23 + λ24), (15)

ι = (λ2λ3 + γ∗/%2)/λ4, (16)

|Ψ%,ι〉 = ((1/%)λ0, %ι, %λ2, %λ3, %λ4). (17)

where γ = λ1λ4e
iχ − λ2λ3, γ∗ is the complex conjugate of γ.

From [30, 29], it is known that when γ 6= 0 but λ2λ3 = 0, the two states (λ0, λ1e
iϕ, λ2, λ3, λ4)

and (λ0, λ1e
iχ, λ2, λ3, λ4) for any phases ϕ and χ are LU equivalent. In this paper, when γ 6= 0

but λ2λ3 = 0, all the states with the same (λ0, λ1, λ2, λ3, λ4) but different phases are consid-

ered to be the same for the uniqueness.

Let |Υ〉 = (λ0, λ1e
iχ, λ2, λ3, λ4) be a complex state with the phase χ 6= 0 or π and Π4

i=0λi 6=
0. It is known that |Υ〉 with % = 1 has one SD, which is its complex conjugate |Υ∗〉 =

(λ0, λ1e
−iχ, λ2, λ3, λ4), where |Υ〉 and |Υ∗〉 are the same ignoring the phases [29]. For the

uniqueness, |Υ〉 with % = 1 and its conjugate |Υ∗〉 are considered to be the same in this paper.

Note that when % 6= 1, |Υ〉 and |Υ∗〉 are LU inequivalent.

For example, |Ξi〉 and their conjugate |Ξ∗i 〉, i = 1, 2, are LU inequivalent. For two qubits,

it is known that a state |ψ〉 =
∑3
i=0 ci|i〉 and its conjugate |ψ∗〉 =

∑3
i=0 c

∗
i |i〉, where c∗i is

the complex conjugate of ci, are LU equivalent. But, it cannot be guaranteed that a state of

three qubits and its conjugate are LU equivalent. This is a difference between two qubits and

three qubits. For three qubits, a state with the phases ϕ 6= 0 or π and Π4
i=0λi 6= 0 and its

conjugate are LU equivalent if and only if % = 1 [29].

For GHZ SLOCC class, ignoring the phases of the states with γ 6= 0 and λ2λ3 = 0, one

can see that if a state (λ′0, λ
′
1e
iχ′ , λ′2, λ

′
3, λ
′
4) is LU equivalent to a state (λ0, λ1e

iχ, λ2, λ3, λ4),

then from [30, 29], the state can be written as

(λ′0, λ
′
1e
iχ′ , λ′2, λ

′
3, λ
′
4) = ((1/%)λ0, %ι, %λ2, %λ3, %λ4).

For the uniqueness of SD for the states (λ0, λ1e
iχ, λ2, λ3, λ4), we have the following theorem

from [29].

Theorem 1 ([29]) For the states (λ0, λ1e
iχ, λ2, λ3, λ4), where χ ∈ [0, 2π), (1) ignoring the

phases of the states with γ 6= 0 and λ2λ3 = 0, and (2) for the states with the phases χ 6= 0

or π and Π4
i=0λi 6= 0, considering a state and its conjugate to be the same whenever they are

LU equivalent, then the SD of the states is unique if and only if % = 1.

Theorem 1 is equivalent to the following verbose version: Consider the states of GHZ

SLOCC class of the form (λ0, λ1e
iχ, λ2, λ3, λ4), where χ ∈ [0, 2π), the condition for the

uniqueness of SD is stated as follows:

a). For real positive states of the form (λ0, λ1, λ2, λ3, λ4) with γ = 0, SD is unique if and

only if % = 1.

b). For real states of the form (λ0, δλ1, λ2, λ3, λ4) with δ = ±1 and γλ2λ3 6= 0, SD is unique

if and only if % = 1.
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c). For complex states of the form (λ0, λ1e
iχ, λ2, λ3, λ4) with γ 6= 0 and λ2λ3 = 0, when

ignoring the phase, SD is unique if and only if % = 1.

d). For complex states of the form (λ0, λ1e
iχ, λ2, λ3, λ4) with the phases χ 6= 0 or π and

Π4
i=0λi 6= 0, by considering a state and its conjugate state to be the same whenever

they are LU equivalent, SD is unique if and only if % = 1.

3.5 Uniqueness of SD for any pure state of GHZ SLOCC class

In this subsection, we study the uniqueness of SD for any pure state |ψ〉 =
∑
i,j,k cijk|ijk〉 of

GHZ SLOCC class. Note that Eq. (11) has two solutions for GHZ SLOCC class. By solving

Eq. (11), we obtain two solutions UA and UA
′

, and then, from UA and UA
′

, we obtain LA0 and

LA
′

0 , respectively. Next, we do a SVD of LA0 and LA
′

0 to get their SDs: (λ0, λ1e
iχ, λ2, λ3, λ4)

and (λ′0, λ
′
1e
iχ′ , λ′2, λ

′
3, λ
′
4). However, it is possible for the two SDs to be the same. Theorem 2

states the condition under which the two SDs are the same, i.e., SD of the state |ψ〉 is unique.

Theorem 2 Let |ψ〉 =
∑
i,j,k cijk|ijk〉 (with i, j, k ∈ {0, 1}) be any state of GHZ SLOCC

class. Then SD of the state |ψ〉 is unique if and only if LA0 and LA
′

0 have the same non-zero

singular value.

Proof. Let λ0 and λ′0 be the non-zero singular values of LA0 and LA
′

0 , respectively. Via steps

for SD, from UA and UA
′

obtain SD and SD′ for |ψ〉.

SD = (λ0, λ1e
iχ, λ2, λ3, λ4), (18)

SD′ = (λ′0, λ
′
1e
iχ′ , λ′2, λ

′
3, λ
′
4). (19)

Then, if SD is unique for |ψ〉, it is clear that λ0 = λ′0. That is, LA0 and LA
′

0 have the

same non-zero singular value. Conversely, assume that LA0 and LA
′

0 have the same non-zero

singular value. That is, λ0 = λ′0. We can write SD′ as ((1/%)λ0, %ι, %λ2, %λ3, %λ4) because

SD′ is LU equivalent to SD [29]. Thus, λ′0 = (1/%)λ0, and then obtain % = 1. In light of

Theorem 1, SD is unique. Therefore, Theorem 2 holds. �

Let us find the non-zero singular value λ0 of LA0 . It is known that the singular values of

LA0 are just the square roots of the eigenvalues of LA0 (LA0 )H , where (LA0 )H is the Hermitian

transpose of LA0 . Let S1 =
∑3
i=0 cic

∗
i , S2 =

∑7
i=4 cic

∗
i , and S3 =

∑3
i=0 c

∗
4+ici, where c∗i is the

complex conjugate of ci. Then, a calculation yields the non-zero singular value λ0 of LA0 :

λ20 = S1u
A
00u

A
00
∗ + S2u

A
01u

A
01
∗ + S3u

A
00u

A
01
∗ + S∗3u

A
01u

A
00
∗. (20)

Similarly, we can calculate the singular value λ′0 of LA
′

0 :

λ′20 = S1u
′A
00u
′A
00
∗ + S2u

′A
01u
′A
01
∗ + S3u

′A
00u
′A
01
∗ + S∗3u

′A
01u
′A
00
∗, (21)

where u′Aij are entries of LA
′

0 .

Then, we derive the condition that LA0 and LA
′

0 have the same non-zero singular value by

letting λ20 = λ′20 as follows.

S1(uA00u
A
00
∗ − u′A00u′A00∗)+S2(uA01u

A
01
∗ − u′A01u′A01∗)

+S3(uA00u
A
01
∗ − u′A00u′A01∗)

+S∗3 (uA01u
A
00
∗ − u′A01u′A00∗) = 0.

(22)
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It is clear to see that the above condition is a function of the coefficients ci. However, the

expression is too general to be convenient. In sec. 4, the expression is reduced for different

cases.

Theorem 2 can be reduced to five cases of GHZ SLOCC class, which will be discussed in

Section 4. Table A.1 in Appendix A includes the five cases as well as the non-GHZ SLOCC

class cases.

4 Cases for GHZ SLOCC class

4.1 When α = 0, γ = 0, and β 6= 0 (Table A.1, Case 2)

When α = γ = 0 but β 6= 0, Eq. (11) reduces to the equation βuA01u
A
00 = 0, from which there

are the following two solutions for UA.

Solution 1 is uA01 = 0 and uA00 = eiφ, one can get UA = diag(eiφ, eiω).

Solution 2 is uA00 = 0 and uA01 = eiφ, one can get the following unitary matrix.

UA
′

=

(
0 eiφ

eiω 0

)
. (23)

For Solution 1, via UA, clearly LA0 = eiφC0. We do not need to do SVD of LA0 to get

the SD of a state since the singular values of LA0 are just the square roots of the eigenvalues

of LA0 (LA0 )H , where (LA0 )H is the Hermitian transpose of LA0 . Let λ0 and 0 be the singular

values of LA0 . Thus, λ20 and 0 are the eigenvalues of LA0 (LA0 )H . A calculation yields

λ20 =

3∑
i=0

|ci|2 (24)

For solution 2, via UA
′

in Eq. (23), clearly LA
′

0 = eiφC1. Similarly, let λ′0 be the non-zero

singular value of LA
′

0 . Then, (λ′0)2 is the eigenvalue of LA
′

0 (LA
′

0 )H . A calculation yields

(λ′0)2 =

7∑
i=4

|ci|2. (25)

From Theorem 2, we obtain the following.

Corollary 1 When α = γ = 0 and β 6= 0, SD is unique if and only if

3∑
i=0

|ci|2 =
1

2
. (26)

Ex. 1. GHZ state 1√
2
(|000〉 + |111〉), which is the maximal entangled state, satisfies∑3

i=0 |ci|2 = 1
2 . Thus, the GHZ state has a unique SD, i.e., itself. Generally, if a GHZ state

is an SD of a state, then the GHZ state is its unique SD.

Ex. 2. For state 1
5
√
5
(|000〉+2|001〉+2|010〉+4|011〉+|100〉+3|101〉+3|110〉+9|111〉), from

Eq. (24) we compute λ20 = 1/5 ; from Eq. (25), we compute (λ′0)2 = 4/5. Therefore, the state

has two SDs [30]:
(

1√
5
, ( 7

5 )2 1√
5
, 7
25

1√
5
, 7
25

1√
5
, 1
25

1√
5

)
and

(
2√
5
, ( 7

5 )2 1
2
√
5
, 7
50

1√
5
, 7
50

1√
5
, 1
50

1√
5

)
.
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4.2 When α = 0, γ 6= 0, and β 6= 0 (Case 4, Table A.1)

For the case, Eq. (11) reduces to uA01(βuA00 + γuA01) = 0, from which there are two solutions

for UA.

Solution 1. uA01 = 0 and uA00 = eiφ . Thus, the unitary matrix UA = diag(eiφ, eiω).

Solution 2. uA00 = − γβu
A
01, where uA01 6= 0. Via the properties of the unitary matrix, a

complicated calculation yields

UA
′

=
|β|√

|β|2 + |γ|2

(
− γβ e

iφ eiφ

eiω γ∗

β∗ e
iω

)
(27)

For Solution 1, clearly LA0 = eiφC0. Let λ0 be the non-zero singular value of LA0 . Similarly,

a calculation yields

λ20 =
3∑
i=0

|ci|2. (28)

Solution 2. Via UA
′

in Eq. (27), clearly LA
′

0 = − γβ
|β|eiφ√
|β|2+|γ|2

C0 + |β|eiφ√
|β|2+|γ|2

C1. Let λ′0 be

the non-zero singular value of LA
′

0 . A calculation yields

(λ′0)2 =
|β|2

|β|2 + |γ|2

(
1 +

(
|γ
β
|2 − 1

) 3∑
i=0

|ci|2 + 2[real(−γ
β

3∑
i=0

cic
∗
i+4)]

)
, (29)

where c∗i is the complex conjugate of ci.

From Theorem 2, we obtain the following.

Corollary 2 When α = 0, γ 6= 0, and β 6= 0, SD is unique if and only if

3∑
i=0

|ci|2 =
|β|2

|β|2 + |γ|2

(
1 +

(
|γ
β
|2 − 1

) 3∑
i=0

|ci|2 + 2[real(−γ
β

3∑
i=0

cic
∗
i+4)]

)
. (30)

Ex. 3. For state 1
2
√
2
(|000〉 + |001〉 + 010〉 + |011〉 + |100〉 + |101〉 + |110〉 − |111〉)), λ20 =

1/2, (λ′0)2 = 1/4. Therefore there are two SDs:
(
1
2 , 0,

1
2 ,

1
2 ,

1
2

)
, and

(√
2
2 ,−

√
2
4 ,
√
2
4 ,
√
2
4 ,
√
2
4

)
Ex. 4. For state 1

2
√
2
(|000〉+ |001〉+010〉+ |011〉+ |100〉+ |101〉+ |110〉−i|111〉)), λ20 = 1/2,

(λ′0)2 = 1/8, there are two SDs:
(√

2
2 ,
√
5
4 e

i(π−arctan 2), 14 ,
1
4 ,

1
4

)
and

(√
2
4 ,
√
2
4 e
−iπ4 , 12 ,

1
2 ,

1
2

)
.

4.3 When α 6= 0, γ = 0, and β 6= 0 (Case 6, Table A.1)

Eq. (11) reduces to uA00(auA00 + βuA01) = 0, which has two solutions for UA.

Solution 1. uA00 = 0 and then uA01 = eiφ. Then, obtain the following unitary matrix,

UA =

(
0 eiφ

eiω 0

)
. (31)

Solution 2. uA01 = −αβu
A
00, where uA00 6= 0. Via the properties of the unitary matrix, a

complicated calculation yields

UA
′

=
|β|√

|β|2 + |α|2

(
eiφ −αβ e

iφ

α∗

β∗ e
iω eiω

)
. (32)
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For solution 1, via UA in Eq. (31), clearly LA0 = eiφC1. Let λ0 be the non-zero singular

value of LA0 . A calculation yields

λ20 =

7∑
i=4

|ci|2. (33)

For solution 2, via UA
′

in Eq. (32), clearly LA
′

0 = |β|eiφ√
|β|2+|α|2

C0 − α
β

|β|eiφ√
|β|2+|α|2

C1. Let λ′0

be the non-zero singular value of LA
′

0 . A calculation yields

(λ′0)2 =
|β|2

|β|2 + |γ|2

((
1− |α

β
|2
) 3∑
i=0

|ci|2 + |α
β
|2 + 2[real(−α

β

3∑
i=0

c∗i ci+4)]

)
. (34)

From Theorem 2, we obtain the following.

Corollary 3 When α 6= 0, γ = 0, and β 6= 0, SD is unique if and only if

7∑
i=4

|ci|2 =
|β|2

|β|2 + |γ|2

((
1− |α

β
|2
) 3∑
i=0

|ci|2 + |α
β
|2 + 2[real(−α

β

3∑
i=0

c∗i ci+4)]

)
. (35)

Ex. 5. For state 1
2
√
3
(3|000〉+ |011〉+

√
2|111〉) (from [14]), λ20 = 1/6, (λ′0)2 = 1/2. There-

fore, there are two SDs. The two SDs are given by [30] as follows: (1/
√

6,
√

3/6, 0, 0,
√

3/2)

and (
√

2/2, 1/2, 0, 0, 1/2). Here, we disregard the phases.

4.4 When αγ 6= 0 (Cases 7.1 and 7.3, Table A.1)

For the case when uA01 = 0, then uA00 6= 0 and detLA0 = α(uA00)2 6= 0. Similarly, when uA00 = 0,

then uA01 6= 0 and detLA0 = γ(uA01)2 6= 0. So, for this case, clearly uA01u
A
00 6= 0 to make

detLA0 = 0. Let t =
uA00
uA01

, therefore t 6= 0. Eq. (11) becomes

αt2 + βt+ γ = 0. (36)

From uA00 = uA01t and via the properties of a unitary matrix, a straightforward and com-

plicated calculation yields

UA =

 t√
|t|2+1

eiφ 1√
|t|2+1

eiφ

1√
|t|2+1

eiω − t∗√
|t|2+1

eiω

 . (37)

For GHZ SLOCC class, τ 6= 0. Thus, Eq. (36) has two solutions: t = −β±
√
τ

2α .

Solution 1. Let p = −β+
√
τ

2α . Via UA in Eq. (37), clearly LA0 = peiφ√
|p|2+1

C0 + eiφ√
|p|2+1

C1.

Let λ0 be the non-zero singular value of LA0 . A calculation yields

λ20 =
1

|p|2 + 1

(
1 +

(
|p|2 − 1

) 3∑
i=0

|ci|2 + 2[real(p

3∑
i=0

cic
∗
i+4)]

)
. (38)

Solution 2. Let q = −β−
√
τ

2α . Via UA in Eq. (37), clearly LA
′

0 = qeiφ√
|q|2+1

C0 + eiφ√
|q|2+1

C1.

Let λ′0 be the non-zero singular value of LA
′

0 . A calculation yields
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(λ′0)2 =
1

|q|2 + 1

(
1 + (|q|2 − 1)

3∑
i=0

|ci|2 + 2[real(q

3∑
i=0

cic
∗
i+4)]

)
. (39)

4.4.1 When αβγτ 6= 0 (Case 7.3, Table A.1)

From Theorem 2 and Eqs. (38, 39) we obtain the following Corollary.

Corollary 4 When αβγτ 6= 0, we can conclude that SD is unique if and only if

1

|p|2 + 1

(
1 +

(
|p|2 − 1

) 3∑
i=0

|ci|2 + 2[real(p

3∑
i=0

cic
∗
i+4)]

)

=
1

|q|2 + 1

(
1 + (|q|2 − 1)

3∑
i=0

|ci|2 + 2[real(q

3∑
i=0

cic
∗
i+4)]

)
. (40)

Ex. 6. For state 2√
10

(|000〉+ 1
2 (|011〉+ |100〉) + |111〉), λ20 = (λ′0)2 = 9/50. When ignoring

the phase, it has a unique SD: 3
√
2

10 |000〉 − 2
5

√
2|100〉+ 1√

2
|111〉.

Ex. 7. For state 1
2
√
2
((
√

2 + 1)|000〉 + |011〉 − (
√

2 − 1)|100〉 + |111〉). λ20 = 1/2, (λ′0)2 =

1/6. Therefore, it has two SDs (We ignore their phases) [30]: (1/
√

6,
√

3/6, 0, 0,
√

3/2), and

(
√

2/2, 1/2, 0, 0, 1/2).

Note that the state in Ex. 7 is LU equivalent to the state in Ex. 5.

4.4.2 when β = 0 and αγ 6= 0 (Case 7.1, Table A.1)

In this case, t = ±
√
− γ
α . Let p =

√
− γ
α and q = −

√
− γ
α .

From Theorem 2 and Eqs. (38, 39) we obtain the following Corollary.

Corollary 5 When β = 0 and αγ 6= 0, SD is unique if and only if

real

(√
−γ
α

3∑
i=0

cic
∗
i+4

)
= 0. (41)

Specially, when
∑3
i=0 cic

∗
i+4 = 0, SD is unique. When all ci are real, SD is unique if and

only if
∑3
i=0 cici+4 = 0 or γ

α > 0.

Ex. 8. For the state −p1|001〉 − p2|010〉 − p3|100〉 + q0|111〉, where pi, i = 1, 2, 3 and q0
are non-zero real numbers, which corresponds to a black hole according to [31], one can see

that
∑3
i=0 cici+4 = 0. Therefore, it has a unique SD.

5 A necessary condition for LU equivalence for GHZ SLOCC class

It is known that two states of the GHZ SLOCC class are considered LU equivalent if their

SDs are the same, which requires computing the SD of each state. Now we can have a new

necessary condition for LU equivalence for GHZ SLOCC class without actually computing

the SD of the state.

Let |ψ1〉 and |ψ2〉 be two pure states of GHZ SLOCC class, SD1 = (λ0, λ1e
iχ, λ2, λ3, λ4)

and SD′1 = (λ′0, λ
′
1e
iχ′ , λ′2, λ

′
3, λ
′
4) be two SDs of |ψ1〉. Note that SD1 and SD′1 may be the

same. Let SD2 = (η0, η1e
iϕ, η2, η3, η4) and SD′2 = (η′0, η

′
1e
iϕ′ , η′2, η

′
3, η
′
4) be two SDs of |ψ2〉.
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Table 1. Values of αA, αB , and αC .

αA J2 + J3 + J4

αB J1 + J3 + J4

αC J1 + J2 + J4

Note that SD2 and SD′2 may be the same. We can compute λ0, λ′0, η0, and η′0 without

transforming the states into SDs.

From Theorem 2, we get the following.

Theorem 3 If two states |ψ1〉 and |ψ2〉 of GHZ SLOCC class are LU equivalent, then the

multisets {λ0, λ′0} = {η0, η′0}.
From Theorem 3, if {λ0, λ′0} 6= {η0, η′0}, then |ψ1〉 and |ψ2〉 are LU inequivalent.

6 Any state having the maximal vNEE must have a unique SD

vNEE is defined as

S(ρ) = −
∑

ηi ln ηi, (42)

where ηi ≥ 0 are the eigenvalues of ρ, and
∑
i ηi = 1. Note that 0 ln 0 = 0. In this section, we

investigate the relation between the uniqueness of SD and the maximal vNEE. To this end,

we explore what states with a unique SD have the maximal vNEE.

We use the notations J1 = |λ1λ4eiχ − λ2λ3|2, Ji = (λ0λi)
2, i = 2, 3, 4, where Ji, i =

1, 2, 3, 4, are LU invariant and defined in [8]. It is known that ρA = (trBC)(ρABC), where

ρABC is the density matrix.

We derived vNEE S(ρµ) for the states of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14), where

µ ∈ {A,B,C} as follows [34].

S(ρµ) = −
(

1+
√

1−4αµ
2 ln

1+
√

1−4αµ
2 +

1−
√

1−4αµ
2 ln

1−
√

1−4αµ
2

)
(43)

where 0 ≤ αµ ≤ 1/4. (see Table 1.) We showed that S(ρµ) increases strictly monotonically as

αµ increases. Thus, S(ρµ) = ln 2 if and only if αµ = 1/4. It is well known that the maximal

vNEE is ln 2.

We calculated the maximal vNEE for real states (λ0,±λ1, λ2, λ3, λ4) of GHZ SLOCC class

in [36], and will compute the maximal vNEE for complex states (λ0, λ1e
iφ, λ2, λ3, λ4) of GHZ

SLOCC class below. We give all the SD states that have the maximal vNEE and a unique

SD and also give all the SD states that have a unique SD in Appendix C.

6.1 The states having the maximal vNEE S(ρA) = S(ρB) = S(ρC) = ln 2 have a

unique SD which is GHZ state

It is known that a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14) has the maximal vNEE

S(ρA) = S(ρB) = S(ρC) = ln 2 if and only if the state is GHZ state [34]. Generally, for any

state |ψ〉 =
∑
i,j,k cijk|ijk〉, it has the maximal vNEE S(ρA) = S(ρB) = S(ρC) = ln 2 if and

only if it has a unique SD GHZ state.
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6.2 The states having the maximal vNEE S(ρA) = ln 2 while S(ρB) < ln 2 and

S(ρC) < ln 2 have a unique SD

First consider the states of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14). Since S(ρA) = ln 2,

αA = 1/4. Thus, we have the following equation.

αA = J2 + J3 + J4 = 1/4. (44)

From Eq. (44), obtain

λ20(λ22 + λ23 + λ24) = λ20(1− λ20 − λ21) = 1/4, (45)

and then

λ40 − λ20(1− λ21) + 1/4 = 0. (46)

The above equation has solutions for λ20 if and only if the discriminant (1− λ21)2− 1 ≥ 0,

i.e., (1− λ21)2 ≥ 1. Clearly, (1− λ21)2 ≥ 1 if and only if λ1 = 0. Then, obtain

λ1 = 0, λ0 = 1/
√

2 (47)

and the state:

|κ〉 =
1√
2
|000〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (48)

where λ2λ3 6= 0.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρA) = ln 2 while S(ρB) < ln 2 and S(ρC) < ln 2, then the state must be |κ〉. One can verify

that |κ〉 has a unique SD, i.e., itself, and for the state |κ〉, αA = 1/4 and so S(ρA) = ln 2.

We calculate S(ρB) and S(ρC) for |κ〉 as follows. αB = J1 + J3 + J4 = λ22λ
2
3 + 1

2λ
2
3 + 1

2λ
2
4 <

1
2 (λ22 + λ23 + λ24) = 1

4 . Similarly, αC < 1
4 . So, S(ρB) < ln 2 and S(ρC) < ln 2.

Generally, for any state |ψ〉 =
∑
i,j,k cijk|ijk〉 of three qubits, if it has the maximal vNEE

S(ρA) (= ln 2) while S(ρB) < ln 2 and S(ρC) < ln 2, then its SD has the same vNEE. Clearly,

the SD must be |κ〉. Thus, |ψ〉 has a unique SD (i.e., |κ〉). Conversely, if |ψ〉 has a SD |κ〉,
then |ψ〉 also has the maximal vNEE S(ρA) = ln 2 while S(ρB) < ln 2 and S(ρC) < ln 2.

We can conclude (i). The state |κ〉 has a unique SD. (ii). The state of the form

(λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14) has the maximal vNEE S(ρA) = ln 2 while S(ρB) < ln 2

and S(ρC) < ln 2 if and only if the state is |κ〉. (iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉, it

has the maximal vNEE S(ρA) = ln 2 while S(ρB) < ln 2 and S(ρC) < ln 2 if and only if it has

a unique SD |κ〉.

6.3 The states having the maximal vNEE S(ρA) = S(ρB) = ln 2 while S(ρC) < ln 2

have a unique SD

First consider the state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14). Since S(ρA) = S(ρB) =

ln 2, then we have the following equations

αA = J2 + J3 + J4 = 1/4, (49)

αB = J1 + J3 + J4 = 1/4. (50)

Then, from the above, obtain

J1 = J2. (51)
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Similarly, from Eq. (49) we obtain

λ1 = 0, λ0 = 1/
√

2. (52)

From Eqs. (51, 52),

λ2λ3 = λ0λ2 =
1√
2
λ2. (53)

From Eq. (53), If λ2 6= 0, then λ3 = 1√
2
. However, it is impossible because

∑4
i=0 λ

2
i = 1.

Therefore, λ2 = 0 and then, we obtain

|$〉 =
1√
2
|000〉+ λ3|110〉+ λ4|111〉, (54)

where λ3 6= 0.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρA) = S(ρB) = ln 2 while S(ρC) < ln 2, then the state must be |$〉. One can verify that

|$〉 satisfies Eq. (26). It means |$〉 has a unique SD, i.e., itself. A calculation yields that

S(ρA) = S(ρB) = ln 2 for |$〉. Since λ3 6= 0, S(ρC) < ln 2.

Similarly, we can conclude:

(i). |$〉 has a unique SD.

(ii). The state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE S(ρA) = S(ρB)

= ln 2 while S(ρC) < ln 2 if and only if the state is |$〉.

(iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉, it has the maximal vNEE S(ρA) = S(ρB) = ln 2

while S(ρC) < ln 2 if and only if it has a unique SD |$〉.

6.4 The states having the maximal vNEE S(ρA) = S(ρC) = ln 2 and S(ρB) < ln 2

have a unique SD

First consider the state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14). Since S(ρA) = S(ρC) =

ln 2, then we have the following equations:

αA = J2 + J3 + J4 = 1/4, (55)

αC = J1 + J2 + J4 = 1/4. (56)

Then, from the above two equations, obtain

J1 = J3. (57)

Similarly, from Eq. (55), obtain

λ1 = 0, λ0 = 1/
√

2 (58)

From Eqs. (57, 58),

λ2λ3 = λ0λ3 =
1√
2
λ3. (59)
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From the above equation, one can see that if λ3 6= 0 then λ2 = 1√
2
. It is impossible. So,

λ3 = 0. Then, obtain the following state

|ξ〉 =
1√
2
|000〉+ λ2|101〉+ λ4|111〉, (60)

where λ2 6= 0.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρA) = S(ρC) = ln 2 while S(ρB) < ln 2, then the state must be |ξ〉. A calculation yields

that S(ρA) = S(ρC) = ln 2 for |ξ〉. Since λ2 6= 0, S(ρB) < ln 2.

Similarly, we can conclude (i). |ξ〉 has a unique SD. because |ξ〉 satisfies Eq. (26), (ii).

The state in the form of (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE S(ρA) = S(ρC) = ln 2

while S(ρB) < ln 2 if and only if the state is |ξ〉. (iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉,

it has the maximal vNEE S(ρA) = S(ρC) = ln 2 while S(ρB) < ln 2 if and only if it has a

unique SD |ξ〉.

6.5 The states having the maximal vNEE S(ρB) = S(ρC) = ln 2 while S(ρA) < ln 2

have a unique SD

First consider the state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) in Eq.(14). Clearly, that S(ρB) =

S(ρC) = ln 2 implies

αB = J1 + J3 + J4 = 1/4 (61)

αC = J1 + J2 + J4 = 1/4 (62)

Then from Eqs. (61, 62), obtain J2 = J3, and then λ2 = λ3. From the definition of αB ,

obtain

λ21λ
2
4 − 2λ1λ

2
2λ4 cosφ+ λ42 + λ20λ

2
2 + λ20λ

2
4 − 1/4 = 0 (63)

Note that
∑4
i=0 λ

2
i = 1. By substituting λ0 with (1 − (λ21 + 2λ22 + λ24)), obtain from Eq.

(63)

λ21λ
2
2 + 2 (cosφ)λ1λ

2
2λ4 + λ42 + 3λ22λ

2
4 − λ22 + λ44 − λ24 +

1

4
= 0 (64)

Case 1. λ2 = 0. Eq. (64) becomes λ44 − λ24 + 1
4 = 0. Then, obtain

λ4 =
1√
2
. (65)

Thus, obtain

|ζ〉 = λ0|000〉+ λ1e
iφ|100〉+

1√
2
|111〉, (66)

where λ1 6= 0. One can verify that |ζ〉 has a unique SD, i.e., itself.

Case 2. λ2 6= 0. We next show that Eq. (64) does not have a solution for λ1 whenever

λ2 6= 0.

To solve λ1 from Eq. (64), let the discriminant

∆ = (2 (cosφ)λ22λ4)2 − 4λ22(λ42 + 3λ22λ
2
4 − λ22 + λ44 − λ24 +

1

4
)

= λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 12λ22λ

2
4 + 4λ22λ

2
4 cos2 φ− 1

)
. (67)
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Case 2.1. cos2 φ = 1. Eq. (67) becomes

∆ = λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 12λ22λ

2
4 + 4λ22λ

2
4 − 1

)
= −λ22

(
2λ22 + 2λ24 − 1

)2
. (68)

Let ∆ = 0 in Eq. (68). Then, obtain 2λ22 + 2λ24 = 1. From Eq. (64), obtain

λ1 = −(cosφ)λ4 = λ4, (69)

where φ = π.

From
∑4
i=0 λ

2
i = 1, 2λ22 + 2λ24 = 1, and λ1 = λ4, obtain

λ20 = 1− (λ21 + 2λ22 + λ24) = 1− (2λ22 + 2λ24) = 0. (70)

It is impossible for λ0 = 0 because λ0λ4 6= 0 for GHZ SLOCC class.

Case 2.2. cos2 φ < 1. Eq. (67) becomes

∆ = λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 12λ22λ

2
4 + 4λ22λ

2
4 cos2 φ− 1

)
< λ22

(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 12λ22λ

2
4 + 4λ22λ

2
4 − 1

)
= −λ22

(
2λ22 + 2λ24 − 1

)2
. (71)

Clearly, ∆ < 0 for the subcase. Therefore, Eq. (64) does not have a solution for λ1 for

the subcase.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρB) = S(ρC) = ln 2 while S(ρA) < ln 2, then the state must be |ζ〉. A calculation yields

that S(ρB) = S(ρC) = ln 2 for |ζ〉. Since λ1 6= 0, S(ρA) < ln 2 for |ζ〉.
We can conclude (i). |ζ〉 has a unique SD, i.e., itself,. (ii). The state in the form of

(λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE S(ρB) = S(ρC) = ln 2 while S(ρA) < ln 2 if and

only if the state is |ζ〉. (iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉, it has the maximal vNEE

S(ρB) = S(ρC) = ln 2 while S(ρA) < ln 2 if and only if it has a unique SD |ζ〉.

6.6 The states having the maximal vNEE S(ρB) = ln 2 while S(ρA) < ln 2 and

S(ρC) < ln 2 have a unique SD

Clearly, that S(ρB) = ln 2 implies

αB = J1 + J3 + J4 = 1/4 (72)

From Eq. (72), obtain

λ21λ
2
4 − 2λ1λ2λ3λ4 cosφ+ λ22λ

2
3 + λ20λ

2
3 + λ20λ

2
4 − 1/4 = 0 (73)

Note that
∑4
i=0 λ

2
i = 1. By substituting λ20 with (1− (λ21 +λ22 +λ23 +λ24)), from Eq. (73),

obtain

λ21λ
2
3 + 2 (cosφ)λ1λ2λ3λ4 + λ22λ

2
4 + λ43 + 2λ23λ

2
4 − λ23 + λ44 − λ24 +

1

4
= 0 (74)

Case 1 λ3 = 0. Eq. (74) becomes

λ22λ
2
4 + (λ24 − 1/2)2 = 0 (75)
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From Eq. (75), obtain λ2 = 0 and λ24 = 1/2 and

|ψ〉 = λ0|000〉+ λ1e
iφ|000〉+

1√
2
|111〉. (76)

It is known that S(ρB) = S(ρC) = ln 2 for the state in Eq. (76).

Case 2. λ3 6= 0.

Case 2.1. λ2 = 0. Eq. (74) becomes

λ44 + 2λ23λ
2
4 − λ24 + λ21λ

2
3 + λ43 − λ23 +

1

4
= 0. (77)

To solve λ24 from Eq. (77), let the discriminant

∆ = (2λ23 − 1)2 − 4(λ21λ
2
3 + λ43 − λ23 +

1

4
) = −4λ21λ

2
3. (78)

Let ∆ = 0 in Eq. (78). Then, obtain λ1 = 0. From Eq. (77), obtain λ24 = 1
2 − λ

2
3. Then,

λ20 = 1/2. Thus, obtain

|ψ〉 =
1√
2
|000〉+ λ3|110〉+ λ4|111〉. (79)

It is known that S(ρA) = S(ρB) = ln 2 for the state in Eq. (79).

Case 2.2. λ2 6= 0. To solve λ1 from Eq. (74), let the discriminant

∆ = (2 (cosφ)λ2λ3λ4)2 − 4λ23(λ22λ
2
4 + λ43 + 2λ23λ

2
4 − λ23 + λ44 − λ24 +

1

4
)

= λ23
(
4λ23 + 4λ24 − 4λ43 − 4λ44 − 4λ22λ

2
4 − 8λ23λ

2
4 + 4λ22λ

2
4 cos2 φ− 1

)
. (80)

Case 2.2.1. cos2 φ = 1. Eq. (80) becomes

∆ = −λ23
(
2λ23 + 2λ24 − 1

)2
. (81)

Let ∆ = 0 in Eq. (81). Then, obtain 2λ23 + 2λ24 − 1 = 0 and λ1 = −2(cosφ)λ2λ3λ4

2λ2
3

= λ2λ4

λ3

from Eq. (74), where cosφ = −1. Then, λ20 =
λ2
3−λ

2
2

2λ2
3

from λ20 + λ21 + λ22 = 1/2. Under that

2λ23 + 2λ24 = 1, λ3 > λ2, and λi 6= 0, i = 2, 3, obtain

|π〉 = λ0|000〉 − λ2λ4
λ3
|100〉+ λ2|101〉+ λ3|101〉+ λ4|111〉. (82)

One can verify S(ρB) = ln 2 for |π〉 in Eq. (82). Since λ2λ3 6= 0, S(ρC) < ln 2 (ref. the

state |ζ〉) and S(ρA) < ln 2 (ref. the state |$〉). One can also check that |π〉 has a unique SD,

i.e., itself.

Case 2.2.2. cos2 φ < 1. From Eq. (80),

∆ = λ23
(
4λ23 + 4λ24 − 4λ43 − 4λ44 − 4λ22λ

2
4 − 8λ23λ

2
4 + 4λ22λ

2
4 cos2 φ− 1

)
< λ23

(
4λ23 + 4λ24 − 4λ43 − 4λ44 − 4λ22λ

2
4 − 8λ23λ

2
4 + 4λ22λ

2
4 − 1

)
= −λ23

(
2λ23 + 2λ24 − 1

)2
. (83)
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Clearly, ∆ < 0 for the subcase. Therefore, Eq. (74) does not have a solution for λ1 for

the subcase.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρB) = ln 2 while S(ρA) < ln 2 and S(ρC) < ln 2, then the state must be |π〉.
Similarly, we can conclude (i). |π〉 has a unique SD, i.e., itself. (ii). The state in the

form of (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE S(ρB) = ln 2 while S(ρA) < ln 2 and

S(ρC) < ln 2 if and only if the state is |π〉. (iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉, it has

the maximal vNEE S(ρB) = ln 2 while S(ρA) < ln 2 and S(ρC) < ln 2 if and only if it has a

unique SD |π〉.

6.7 The states having the maximal vNEE S(ρC) = ln 2 while S(ρA) < ln 2 and

S(ρB) < ln 2 have a unique SD

Proof. Clearly, that S(ρC) = ln 2 implies

αC = J1 + J2 + J4 = 1/4 (84)

From Eq. (84), obtain

λ21λ
2
4 − 2λ1λ2λ3λ4 cosφ+ λ22λ

2
3 + λ20λ

2
2 + λ20λ

2
4 − 1/4 = 0 (85)

Note that
∑4
i=0 λ

2
i = 1. Substituting λ20 with (1− (λ21 +λ22 +λ23 +λ24)) in Eq. (85), obtain

λ21λ
2
2 + 2 (cosφ)λ1λ2λ3λ4 + λ42 + 2λ22λ

2
4 − λ22 + λ23λ

2
4 + λ44 − λ24 +

1

4
= 0 (86)

Case 1. λ2 = 0.

Eq. (86) becomes

λ23λ
2
4 + (λ24 − 1/2)2 = 0 (87)

Then, λ3 = 0 and λ24 = 1/2 from Eq. (87). Thus,

|ψ〉 = λ0|000〉+ λ1e
iφ|000〉+

1√
2
|111〉. (88)

It is known that S(ρB) = S(ρC) = ln 2 for the state in Eq. (88).

Case 2. λ2 6= 0.

Case 2.1. λ3 = 0. Eq. (86) becomes

λ44 + 2λ22λ
2
4 − λ24 + λ21λ

2
2 + λ42 − λ22 +

1

4
= 0 (89)

To solve λ24 from Eq. (89), let the discriminant

∆ = (2λ22 − 1)2 − 4(λ21λ
2
2 + λ42 − λ22 +

1

4
) = −4λ21λ

2
2. (90)

Let ∆ = 0 in Eq. (90). Then, obtain λ1 = 0. From Eq. (89), λ24 = 1
2 − λ22. Then,

λ0 = 1/
√

2. Thus, obtain

|ψ〉 =
1√
2
|000〉+ λ2|101〉+ λ4|111〉. (91)
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It is known that S(ρA) = S(ρC) = ln 2 for the state in Eq. (91).

Case 2.2. λ3 6= 0. To solve λ1 from Eq. (86), let the discriminant ∆ for λ1

∆ = (2 (cosφ)λ2λ3λ4)2 − 4λ22(λ42 + 2λ22λ
2
4 − λ22 + λ23λ

2
4 + λ44 − λ24 +

1

4
)

= λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 8λ22λ

2
4 − 4λ23λ

2
4 + 4λ23λ

2
4 cos2 φ− 1

)
(92)

Case 2.2.1. cos2 φ = 1. Eq. (92) becomes

∆ = λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 8λ22λ

2
4 − 4λ23λ

2
4 + 4λ23λ

2
4 − 1

)
= −λ22

(
2λ22 + 2λ24 − 1

)2
. (93)

Let ∆ = 0 in Eq. (93). Then, obtain 2λ22 + 2λ24 − 1 = 0. From Eq. (86), obtain

λ1 = −2(cosφ)λ2λ3λ4

2λ2
2

= λ3λ4

λ2
, where cosφ = −1. Then, λ20 = 1

2λ2
2

(
λ22 − λ23

)
. So, under that

λ2 > λ3, 2λ22 + 2λ24 = 1, λi 6= 0, i = 2, 3, obtain

|κ〉 = λ0|000〉 − λ3λ4
λ2
|100〉+ λ2|101〉+ λ3|101〉+ λ4|111〉. (94)

One can verify that S(ρC) = ln 2 for |κ〉 in Eq. (94). Since λ2λ3 6= 0, S(ρA) < ln 2 (ref.

the state |ξ〉) and S(ρB) < ln 2 (ref. the state |ζ〉). One can also check that |κ〉 has a unique

SD, i.e., itself.

Case 2.2.2. cos2 φ < 1. Eq. (92) becomes

∆ = λ22
(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 8λ22λ

2
4 − 4λ23λ

2
4 + 4λ23λ

2
4 cos2 φ− 1

)
< λ22

(
4λ22 − 4λ42 + 4λ24 − 4λ44 − 8λ22λ

2
4 − 4λ23λ

2
4 + 4λ23λ

2
4 − 1

)
= −λ22

(
2λ22 + 2λ24 − 1

)2
(95)

Clearly, ∆ < 0 for the subcase. Therefore, Eq. (86) does not have a solution for λ1 for

the subcase.

Thus, we show that if a state of the form (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE

S(ρC) = ln 2 while S(ρA) < ln 2 and S(ρB) < ln 2, then the state must be |κ〉.
Similarly, we can conclude (i). |κ〉 has a unique SD, i.e., itself. (ii). The state in the

form of (λ0, λ1e
iχ, λ2, λ3, λ4) has the maximal vNEE S(ρC) = ln 2 while S(ρA) < ln 2 and

S(ρB) < ln 2 if and only if the state is |κ〉. (iii). For any state |ψ〉 =
∑
i,j,k cijk|ijk〉, it has

the maximal vNEE S(ρC) = ln 2 while S(ρA) < ln 2 and S(ρB) < ln 2 if and only if it has a

unique SD |κ〉.

7 Summary

It is not hard to understand the uniqueness of SD for three qubits for the five SLOCC classes

except for the GHZ SLOCC class. In this paper, we propose a necessary and sufficient

condition for the uniqueness of SD for three qubits for the GHZ SLOCC class. By the

condition, one can determine whether a three-qubit state has one or two SDs without actually

performing the Schmidt decomposition.

We also explore the relation between the uniqueness of SD and the maximal vNEE. To this

end, we prove that any state having the maximal vNEE S(ρx) = ln 2, x = A,B, or C must

have a unique SD. Therefore, we should not choose a state having two SDs for its maximal

vNEE for quantum information theory.
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Appendix A . Calculating UA

For each case for the values of α, β, γ, and τ in Eqs. (7, 8, 9, 10), we give a simple and

symmetric UA in Table A.1 which satisfies the equation detLA0 = 0. For cases 1-4, UA = I

(the identity). For cases 5 and 6, UA = σx (the Pauli operator). We derive UA for Case 7

below.

Case 7. α 6= 0 and γ 6= 0.

For the case, when uA01 = 0, then uA00 6= 0 and Eq. (11) reduces to that detLA0 = α(uA00)2 6=
0. Similarly, when uA00 = 0, then uA01 6= 0 and Eq. (11) reduces to that detLA0 = γ(uA01)2 6= 0.

So, for the case, clearly uA01u
A
00 6= 0 to make detLA0 = 0. Let t =

uA00
uA01

. Then, t 6= 0 and Eq.

(11) becomes

αt2 + βt+ γ = 0.

Then, from uA00 = uA01t and via the properties of a unitary matrix, a straightforward and

complicated calculation yields

UA =

 t√
|t|2+1

1√
|t|2+1

1√
|t|2+1

− t∗√
|t|2+1

 . (A.1)

Case 7.1. β = 0.

Eq. (36) has two solutions:

t =
±
√
−αγ
α

, (A.2)

from which we can obtain two solutions for UA.

Case 7.2. β 6= 0 but τ = 0.
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Eq. (36) has one solution

t = − β

2α
, (A.3)

from which we obtain a unique UA.

Case 7.3. β 6= 0 but τ 6= 0.

Eq. (36) has two solutions:

t =
−β ±

√
τ

2α
, (A.4)

from which we obtain two solutions for UA.

Table A.1 lists the number of solutions for Eq. (11), which is also the number of solutions

for UA, in all cases.

Table A.1. The number of solutions for UA

cases α γ β τ num sol SLOCC classes UA

1 0 0 0 0 infinite B-AC,C-AB,A-B-C I

2 0 0 6= 0 6= 0 2 GHZ I

3 0 6= 0 0 0 1 W or A-BC I

4 0 6= 0 6= 0 6= 0 2 GHZ I

5 6= 0 0 0 0 1 W or A-BC σx

6 6= 0 0 6= 0 6= 0 2 GHZ σx

7.1 6= 0 6= 0 0 6= 0 2 GHZ Eq.(A.1,A.2)

7.2 6= 0 6= 0 6= 0 0 1 W or A-BC Eq.(A.1,A.3)

7.3 6= 0 6= 0 6= 0 6= 0 2 GHZ Eq.(A.1,A.4)

Appendix B . SVD for degenerate 2 by 2 matrices LA0

Let M = LA0 from Eq. (5).

Case 1. M = 0. We choose U = V = I. Clearly, UMV = 0.

Case 2. Just three entries of M vanish. In the following, φ is real and r > 0. Let

Σ = diag(r, 0), U =

(
e−iφ 0

0 eiφ

)
, and U ′ =

(
0 e−iφ

eiφ 0

)
.

Case 2.1. M =

(
reiφ 0

0 0

)
. Then, UMI = Σ.

Case 2.2. M =

(
0 reiφ

0 0

)
. Then, UMσx = Σ.

Case 2.3. M =

(
0 0
reiφ 0

)
. Then, U ′MI = Σ.

Case 2.4. M =

(
0 0
0 reiφ

)
. Then, U ′Mσx = Σ.
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Case 3. Just two entries of M vanish. Let

Π =

(
a∗√

aa∗+bb∗
b∗√

aa∗+bb∗

b∗√
aa∗+bb∗

− a b
∗
b√

aa∗+bb∗

)
, (B.1)

D =

( √
aa∗ + bb∗ 0

0 0

)
. (B.2)

Case 3.1. M =

(
a b
0 0

)
. Then, σzMΠ = D.

Case 3.2. M =

(
0 0
a b

)
. Then, σxMΠ = D.

Case 3.3. M =

(
a 0
b 0

)
. Then, ΠMI = D.

Case 3.4. M =

(
0 a
0 b

)
. Then, ΠMσx = D.

Case 4. All the four entries of M do not vanish.

Let M =

(
a b
c d

)
, where abcd 6= 0. Without loss of generality, we consider that

c
a = d

b = k and then M =

(
a b
ka kb

)
.

Let

K =

(
1√

(kk∗+1)

k∗√
kk∗+1

k√
kk∗+1

− 1√
kk∗+1

)
, (B.3)

then,

KMΠ =

( √
aa∗ + bb∗

√
kk∗ + 1 0

0 0

)
. (B.4)

Appendix C . All the states of the GHZ SLOCC class that have a unique SD

Via Theorem 1 and by calculating %, we show that a state {λ0, λ1eiφ, λ2, λ3, λ4} of GHZ

SLOCC class has a unique SD if and only if it is of one of the following forms.

Form 1. When λ1 = 0, a state has a unique SD if and only if its SD is of the form { 1√
2
,

0, λ2, λ3, λ4}.
Form 2. When λ2 = 0, a state has a unique SD if and only if its SD is of the form

{λ0, λ1, 0, λ3, λ4}, where 2λ20 + 2λ21 = 1.

Form 3. When λ3 = 0, a state has a unique SD if and only if its SD is of the form

{λ0, λ1, λ2, 0, λ4}, where 2λ20 + 2λ21 = 1.

Form 4. When λ2 = λ3 = 0, a state has a unique SD if and only if its SD is of the form

{λ0, λ1, 0, 0, 1√
2
}

Form 5. When λ1λ2λ3 6= 0, a state has a unique SD if and only if its SD satisfies

cosφ =
λ4(2λ2

0+2λ2
1−1)

2λ1λ2λ3
.


